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ABSTRACT

:Theoretical aspects of supersonic magnetoaerodynamic flow about a
blunt body with self contained magnetic field source are presented. The
effect was studied for a hemisphere nose containing a dipole field source
with body and magnetic axis at zero angle-of-attack: Theoretical pre-
dictions of the alteration of magnetoaerodynamic coefficients and of the
flow field are presented for a range of parameters appropriate for possible
application to planetary entry flight control and laboratory simulation.
Emphasis was on determining the principal contributing effects for con-
tinuum, aerodynamicelike flows.

After a general introductory to flight magnetohydrodynamics and
appropriate literature survey, flight and laboratory regimes were
delineated and compared. A mathematical model for constant property
flow was developed and the equations were non-dimensionalized in terms of
parameter groups. Estimates of the expected range of parameters were
presented.

The equations were reduced for the stagnation region where the prin-
cipal effect and local similarity accur. The resulting two point boundary
value problem with undetermined boundary point was solved analytically
for simple degenerate cases and numerically for more complex combinations
of the parameters. The numerical techniques are discussed.

It was found that the shock density ratio and magnetic interaction para

meter are of principal importance. Viscous effects are also important for



low density laboratory flows. Results are presented which demonstrate
these effects and the influence of magnetic field distortion and the

Hall effect,

Comparison with experiment and new avenues for theory are discussed.
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CHAPTER I
INTRODUCTION

1.1 Flight Magnetohydrodynamics

It is well known that the bow shock ahead of a blunt body in hyper-
sonic flow results in an ionized region of electrically conducting gas.
In entry flight to Earth or other planets, communications blackout may
occur, the structural integrity of the vehicle may be impaired and the
aerodynamic forces may not be sufficient to maintain control of a high
speed vehicle.

Incorporation of magnetic field coils in space vehicles offers in-
teresting possibilities in alleviating some of the problems of space
flight. It has been suggested by Kantrowitz (Ref. 1) and by Resler and
Sears (Ref. 2) that coupling the flow field with a magnetic field might
have salutory effects by increasing the drag experienced by an entry
vehicle, Other promising applications of external magnetogasdynamics
are: the opening of communications windows, enhanced flexibility of
maneuvers through improved flight control, active shielding against
radiation, the reduction of convective heat transfer and the elimination
of the conventional heat shield,

So far such schemes have not been exploited due to hardware design
limitations and due to the fact that current design philosophy has been
successful in current programs. However, continuing progress in super-
conducting magnets and the demands of advanced space programs lend prac-

tical significance to equipping space vehicles with electromagnets.

-1 -



This work is concerned with one of the applicaticns mentioned above,
namely magnetoaerodynamic drag., Although categorization often leads to
questionable over simplification, a vehicle may be said to enccunter
three types of drag, i.e., aerodynamic, magnetohydrodynamic and electric.
In general, the first two classes are associated with continuum flow
while the last occurs at extremely high altitudes where the gas is sub-
stantially rarefied. Since the underlying practical application of the
study is entry drag and its enhancement in appreciable atmosphere, this
study does not concern itself with electric drag. The reader is referred
to Wood (Ref. 3) for such a study while the present work is limited from
the onset to continuum flow. The regime where such flows exist is dis-
cussed in Chapter II. It is natural to further limit the bulk of the
discussion to bodies and electromagnets with axis at zero angle-of-at-
tack and to aercdynamic-like flows. Angle-of-attack produces cross-flow
and lift but the drag is the same qualitatively. Magnetically dominated
flow may occur at extremely high magnetic field strength causing a 1lift-
off of the flow from the body. However, before employment of the pheno-
mena of investigation it is very important to understand the intermediate
or aerocdynamic-like flow first.

While an analysis of the complete configuration of a blunt vehicle
requires knowledge of the flow in the ncse region, along the afterbody
and in the base region, the point of view taken here is that the princi-
pal magnetchydrodyrnamic effect for braking will occur near the nose.
Thus, the theory is principally concerned with the stagnation region.

For concreteness we consider a hemisphere nose and an cnboard magnetic



dipole field source located at the nose radius center of curviture.

The general configuration of interest is shown in Figure la. With no
magnetic field, the flow has the well known features associated with hyper-
sonic flight, A bow shock lies forward of the nose and because of the
thinness of the shock layer, the layer of gas between the shock and body,
the shock is nearly concentric with the nose. Far away from the body, the
shock angle approaches that for a small disturbance. The shock has finite
thickness but is presumably small in thickness, Other distinctive layers
include the inviscid, boundary and sheath layers. These are described in
detail in Chapter II., Wake or base flow occurs behind the body. 1In hyper-
sonic flow, this is a region of low density and little direct effect of it
is felt by the body except for suction due to its low pressure. This is the
so-called base drag. Most of the drag, however, is due to the pressure on
the nose. Friction drag also is important for low Reynolds number flow.
These considerations allow one to consider the nose region only and account
for most of the drag effect. Base drag is small and can be estimated if desired.

When the magnet is turned on, as in Figure lb, the flow interacts with
the magnetic field to cause a body force on the fluid, J x B where J is
current density and B magnetic field strength. The reaction force of these
Jd x B forces (on each fluid element) is felt by the magnet structure and
thus by the vekicle as a unit. The drag of the vehicle tends to increase.

This is the basic phenomena behind the MHD drag concept.

The shock stand-off distance increases because the flow is slcwed down
and requires a larger passage area between the shock and body in

order to accomodate the flow rate impressed ahead of the shock wave.



Obviously, the flow rate cannot be influenced by anything that occurs
downstream of the shock wave (so long as we neglect free stream mag-
netic interaction). Figure 1b also indicates the currents involved.
These are discussed in detail later, Basically, the principal currents
run in the azimuthal direction or in rings about the axis. These cur-
rents interact with the magnetic field to produce Hall currents, The
entire system is highly coupled and the Hall current paths depend cn
the conductivity of the body. In Figure 1lb we show the path near the
shocke In this region the path is qualitatively the same for an insula-
ted or conducting body.

The general effects of the applied magnetic field can be summarized
as follows. The skin fricticn and stagnation point heat transfer are
decreased due to a reduction of the velocity gradient. The pressure
drag is diminished due to a partial support of the flow by the magnetic
pressure, The total drag of the body increases because of the Lorentz
force on the fluid and the reactive force on the magnet, The body is
subjected to a rolling moment due to reaction on the magnet cf the
Lorentz force in the azimuthal directica,.

Mcst of the literature cited deals with the external flow since
the MHD drag force is most conveniently tkought of as a body force on
the fluid with reactive fcrce on the magnet structure. Thus, one may
integrate the fluid body force to obtain the body drag. We purposefully
avoid studies limited to tke boundary layer because in such a case
calculation of the external contribution tu the drag canz only be made
through knowledge of the magnetic stress at the body. In order to obtain

the magnetic stress onme must first solve the outer flow and supply its



solution as a boundary condition for the boundary layer anralysis. Thus,
while bcundary layer theory is useful for describing boundary phenomera
such as skin friction and heat transfer, it is inadequate for predicting
the total MHD drag. Further, at high altitudes or in low density labora-
tory simulation, the boundary layer may cease to exist., This occurs at
low Reynolds number., Accordingly, some of the references cited and the
theory presented here have scme consideration of the viscous shock layer.

Generally, most MHD analyses follow either of two basic viewpoints.
One approach is to assume that the plasma is compressitle but that its
electrical conductivity is infinite., The alternate approach is to ap-
preciate the finite conductivity but to assume that the plasma density is
locally constant., The former viewpcint, although practically unrealistic,
makes it possible to reduce the problem to a form well exploited in com-
ventional gasdynamics. Analogously, singularities occur at magnetic Mach
number of unity instead of simply Mach cne., The seceond approach too has
limitations in MHD analyses. The acceptance of finite conductivity is a
great improvement since the shock layer conductivity may be low. However,
the assumption of constant density is nct completely acceptable. This is
particularly true in magnetically dominated flows where the density es-
seantially vanishes at the boundary of no flow. However, the constant
density approximation has been very useful in aerodyramic-like flow studies
where the body supports the shock layer. In such a layer, the density is
relatively comstant, particularly at hypersonic speeds. The constant den-

ity apprcximation will be discussed in mcre detail subsequently.
One great simplification that is often made is that the magnetic

Reynclds number is small so that wave prcpagation effects, characteristic



of high magnetic Reynclds number, are not present. The applied magnetic

field can also be assumed to be undistorted or only perturbed by the flow
for small magnetic Reynolds number, This effect will be studied through

the theory developed. Finally one can make the very rough approximation

that the flow field is not much effected by the magnetic field, This is

valid for very small magnetic interaction.

In almost all analyses it has been assumed that a simple form of
Ohm's law applys. Essentially, the Hall effect is neglected. However,
depending on the magnitude of the Hall coefficient, which depends on the
magnetic field strength linearly, and depending on the geometry currents
and electric fields arise and effect the flow and drag. Further, these
currents, which lie in meridian planes (planes including the body and
magnetic axis), give rise to bcdy forces in the azimuthal direction and
a reactive rolling moment on the body.

The Hall effect has been studied in detail for only simple external
flows. For example, Levy (Ref. 4) studied the assumption of reduced
effective conductivity on the flow past a conducting wire with no per-
turbation. However, his attention was directed to the alteration of
currents that would exist without the Hall effect although one plot cf

Hall current path lines was presented. In the theory developed here, the

Hall effect is studied, Predictions of its effect on the flow and electro-

magnetic fields, the conventional magnetcaerodynamic coefficients and the
torque coefficient are made.

The rest of this chapter concerns a literature survey limited to
areas reflecting on the drag problem, In Chapter II the flow regimes are
delineated, That is, we attempt to foresee what assumptions are approp-

riate. This is done not only for flight conditions but for conditions



which exist in low density laboratory plasma facilities, All subsequent
development includes such ccnsiderations as well.

In Chapter III, a mathematical model for constant property flow is
developed. Chapter IV concerns equation reduction for the shock layer
stagnation region in terms of local similarity. The explicit solutions
are discussed in Chapter V and the results are presented in Chapter VI,
Rather than consider all possible variations of all combinations of
parameters, the emphasis is on discovering which effects are important
by studying them one at a time. Conclusions, based on theory and experi-
ment, are summarized in Chapter VI . At this point we focus on the ob-
servations made in course of the present theory and suggest how the MHD
effect may be accounted for. Finally, its shortcomings are recalled and
recommendations for future study are made.

1.2 Literature Survey

The survey that follows is intended to lend historical perspective
to the theoretical develcopment of magrnetoaerodynamics related to the drag
problem. The principal assumptions are listed in Table 1 for representa-
tive studies.

In 1958, ﬁush (Ref. 5) treated the hypersonic, axisymmetric stagna-
tion point flow about a blunt body with magnetic source. The flow was
assumed to be inviscid and incompressible behind the shock. The assump-
tions of constant density and electrical conductivity in the layer behind
a shock concentric with the body allowed reduction cf the problem by
similarity to two coupled, non-linear crdinary differential equations.
The one pcint boundary value problem was numerically integrated backwards

from the shock to the body after the flow properties and magnetic field



intensity were specified at the shock. This approach is convenient but

is in terms of rather unnatural parameters such as

Rems = leiRs o (1-1)
GIBSZRS

S = 1-2

s A (1-2)

where Rem is the magnetic Reynolds number, S is the magnetic interaction
parameter and g is conductivity V velocity, R radius, B magnetic field
intensity and p density. The subscripts @, s, 1 refer to the flow at
infinity, at the shock and in the shock layer respectively. The para-
meters are unnatural because they are based on a prior unknown shock
condition "s" instead of the body reference.

The solution was obtained for € = 1/11 where
€ =p,/P; (1-3)
and for Remé;i 0, «2 and 1, The interaction parameter Ss ranged from
0 to 16, Beyond Ss = 16 no sclution was found to exist and the approach
to this limit was accompanied by a rapid increase in shock stand-cff
distance. However, the value of the more natural interaction parameter

2
0lBo Rb

S =
PV

(1-4)

based on stagnation point field and body radius had a value of over
300 near the limit., In a later note (Ref, 6), Bush suggested that
arbitrarily large values cof S produce correspondingly large stand-off

distances

6 = —— (1-5)



It is surprising that the net effect is a limiting Ss'

Both the stand-off and pressure religf.were found to in-
crease with Ss and Reﬁ:.

In an analytical study of the same basic problem as Bush, Kemp
(Ref. 7) extended Lighthill's non-MHD solution (Ref. 8) to the case
where a radial magnetic field is present. An expansion technique in
€ and S required small values of these parameters. Also, the magnetic
field was assumed to be undistorted (Rem = 0). While Kemp succeeded
in calculating the MHD induced pressure relief, Freeman (Ref. 9)
showed Kemp's analysis to be incorrect due to a false assumption of
analyticity of the functions concerned. Freeman applied Lighthill's
prescription (Ref. 10) for rendering such solutiqns uniformly yalid
and determined that the MHD pressure relief is negligible to first
order in S, That is, for small interaction the body pressure coef-
ficient is virtually uneffected.

In reply to Freeman, Kemp conceded the analyticity error and
extended the earlier work by numerically integrating the equationms.,
For € = 1/10 and S from 0 to 6, the stand-off, velocity gradient and
pressure gradient were calculated; the later being small as indicated by
Freeman,

Meyer (Ref. 12) extended the MHD hypersonic, stagnation point flow

solution to include viscosity and heat transfer. Proposing a similarity

solution for small values of Rem/Re, where Re is the Reynolds number

Re = pVR/'r] (1-6)
n is viscosity, Meyer obtained the boundary layer approximation as a

function of S for large S. The heat transfer coefficient was reduced
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at the wall but increased in the external flow.

Ladyzkenskii (Ref. 13) treated subsonic, incompressible flow over bodies
in order to study certain induced effects. For Rem - ®, there occured large
surface currents and an induced magnetic field which exactly cancelled the
applied magnetic field. For large but finite Rem there occurs a Prandtl
type "magnetic boundary layer" and a thickened boundary layer with reduced
region of external flow.

Ladyzkenskii (Ref. 14) further considered a wedge and cone in hyper-
sonic, constant conductivity flow., Compressibility was included in an
approximate way by using the polytropic law along a streamline. He neglected
the dissipation term in the modified Bernoulli equation. The deformation of
the magnetic field is handled by writing the appropriate Maxwell equation in
intergral form and solving for the first successive approximation. An impor-
tant result of Ladyzkenskii is the prediction of a magnetically induced
separation point which is not normally present in conical or wedge flow. The
separation, which moves toward the stagnation point with increasing inter-
action, is accompanied with an inflection in shock curviture such that the
shock curves away from the body.

Yen (Ref. 15) reduced the problem of two-dimensional, incompressible
subsonic, constant viscosity and conductivity, MHD flow past a wedge. Two
crdinary, non-linear differential equaticns resulted from similarity. The
sclution was not carried out further,

Ludford and Murray (Ref. 16) also treated the incompressible subsoaic
prcbhlem but for a sphere with a dipole field source enclosed., Fluid proper-
ties were uniform including electrical conductivity and magnetic permeability

which were also arbitrary constants of the sphere. A product type sclution
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was found after an expansion process was applied. This was accomplished by

first expanding in the magnetic pressure number

B=—"""7 (1-7)
AN

to first order and further expanding that first term in a singular perturba-
tion of the magnetic Reynolds number. The results are valid for small g and
Rem. This implies a small value of S. The fluid pressure drag was found to
be unchanged from zero to first order in Rem. Further, the MHD drag was inde-
pendent of the body conductivity so long as it was not infinite, The MHD drag
of an infinitely conducting body was still unchanged so long as its permeabi-
lity u was equal to the fluid value. A high permeability, infinitely conduct-
ing body would have a greatly increased drag. In summary, the MHD drag was
unchanged for cordinary body composition according to the results of Ludford
and Murray's analysis.,

Returning to supersonic analyses, Wu (Ref. 17) extended Bush's soluticn
to include viscosity and heat transfer. The dynamics of the constant property
(density, viscosity and conductivities) flow was reduced to two ordinary
differential equations. Once these functiocns were determined, two other
differential equations yielded thke thermodynamics. The solution was accomp-
lished on a PACE 1631 analog computer. Wu found the same limiting SS pheno-
mena as Bush., That is, solutions for interaction parameters beyond a point
were non-existant, Significant was the fact that the shock stand-off distance
increased with the parameters Rems, Bg and 1/Res.

Meyer (Ref, 18) utilized the fact that the total enthalpy is constant
along a stream line in axisymmetric, adiabatic flow even though Joule heating

is present. Treating hypersonic, constant property flow, Meyer developed
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a Newtonian-Busemann type theory modified for MHD application. A similarity
solution was found for this approximation.

Lykoudis (Ref. 19) also considered the Newtonian-Busemann approximation
in the sense that the conventional pressure distribution was used in the
momentum equation for a stream line. The assumption is justified for small
interaction according to the work of Kemp and Freeman. Constant property,
inviscid flow was assumed behind the shock. The radial magnetic field was
taken as a constant. An appropriate mean value is suggested by Lykoudis
in Reference 20. The solution was in terms of integrals which were func-
tionals of a special variable including Ss and €., Magnetic field deforma-
tion was neglected. In addition to sample solutions for € = 1/5, 1/10, 1/15
and 1/20 and for Ss from 0 to 30, Lykoudis gives empirical functions for
the stand-off and velocity gradient in closed form in terms of SS and €.

Pai and Kornowskii (Ref. 21) treated the hypersonic, inviscid, constant
property, stagnation flow similarly to Bush but the magnetic field was
assumed to appear in an inverse n-power law at the shock. Values of n of
3, 4 and 5 were selected where 3 corresponds to Bush's choice of a dipole.
Actual field coils will have a faster drop off or a higher n-power value.
The origins of the poles were chosen to be located cne body radius behind
the shock. Unfortunately this physical location varies in the prcblem.
Thus, while the MHD effect, characterized by the shock stand-off, increased
with increasing n, part of the effect must be attributed to the resultant
movement of higher n-power poles closer to the flow. While sufficiently
high values of S were not used in the numerical examples, the above scheme
could result in poles situated outside of the body and in the flow.

Whereas low magnetic Reynolds numbers are expected for flight situations,
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Andrade (Ref. 22) dealt with hypersonic, compressible flow with Rem —» =,

With no heat transfer or other dissipation, the use of

g‘t ( F;LQ =0 (1-8)

was justified. The Van Dyke transformation led to reduction to second
order, non-linear, ordinary differential equations. No results were given.

Power and Turnbridge (Ref. 23) extended Ludford and Murray's analysis
of a sphere to the two dinensional case. Both analyses are parallel.

Levy and Petschek (Ref. 24) considered hypersonic flow normal to a
conducting cylinder with concentric magnetic field lines. In the stagna-
tion region, this corresponds qualitatively to a dipole with the principle
axis normal to the flow rather than the usual case. Both high and low
magnetic Reynolds numbers were treated according to appropriate ad hoc
approximations., At high enough MHD interaction it was predicted that the
shock layer would actually lift off the body and be magnetically supported.
This phenomena was verified experimentally by Locke, Petschek and Rose (Ref.
25), but their photographs do not show a sharp no-flow boundary. It was
predicted that this lift-off would occur and be accompanied with further
lift-off with a constant shock interaction parameter Ss. The theory
necessarily included compressibility since a body would no longer be present
to back up the flow and the density would vanish at the no-flow boundary.
It is interesting to note that Bush's incompressible solution did not exist
beyond a critical Ss' Therefore, it would appear that this may be due to a
non-existant physical solution.

Smith and Wu (Ref. 26) extended Bush's solution to include viscosity.
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Numerical solutions again were non-existant beyond a critical Ss. Smith

and Wu suggested that the phenomena may be due to large deformation of

the magnetic field at high interaction. This does not appear to be the

case since Bush found only a small difference in computations for Rem = .2
€

and 1. The present author has repeated the calculations (to be discussed

later) for the limit Rem = 0 and has found again no significant difference

for the case of no magnetic deformation.

It seems that the critical SS occurs naturally with a large field
strength, Bo, causing an increase in stand-off coupled with a decrease in
BS such that SS = olBSZRs/pwV; remains constant. This assumption was used
by Ericson and Maciulaitus (Ref., 27) who added a gimbeling magnet in the
nose to produce lift for entry flight control. The flow was divided into
a longitudinal flow and a cross-flow with respect to the magnetic axis.
The longitudinal flow, causing drag, was not considered further. The
authors indicate that MHD flight control would be effective enough to trim
a 20° sphere-cone of nose radius 0.5 meter and length 5.5 meters while in
interplanetary re-entry.

Levy, Gierasch and Henderson (Ref. 28) extended the work of Levy and
Petschek to include a sphere in magnetically dominated flow. The analysis
indicated the presense of a no-flow region at large Ss interaction and that
the interaction parameter at the shock, SS, is constant.

It appears as though an increase in interaction parameter (say by in-
creasing the stagnation point field strength) causes an increase in shock
stand-off and an increase in shock interaction parameter SS. While this
occurs, the body supports the shock layer and maintains the layer density

about constant., Beyond a critical value of Ss’ the shock layer is lifted
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off the body and is magnetically supported. The density must essentially
vanish at the no-flow boundary and so a constant density solution does

not exist., Further increase in the interaction parameter S causes an
increase in shock stand-off and a decrease in shock magnetic field such that
SS is held constant. Viscosity apparantly does not change the situation
except for altering the critical Ss (Ref. 26). The experiments do not show
a sharp no-flow boundary and so there is apparantly some leakage into the
region where the theory predicts no-flow. It is conceivable that the col-
lision mechanism at low density is not sufficient to prevent diffusion into
the forbidden area. Alternatively, the Hall effect may reduce effective
interaction near the body where the magnetic field is high and this reduced
interaction may admit some flow. Finally, a no-flow region may be unstable.
Or a combination of these effects may be present.

Smith, Schwimmer and Wu (Ref. 29) have extended their previous viscous,
hypersonic, stagnation flow solution so that it is based on the natural
parameters based on body radius and magnetic field., This involves the
solution of a two point boundary value problem with second point unknown.
The solution was accomplished through the use of normal quasilinearization
wherein the non-linear equations are replaced by a sequence of systems of
linear equations which are readily treated by the extensive theory of
linear systems., Unfortunately, solutions at even moderate interaction
parameter were not found because the linear system converged to an incor-
rect solution except for small S. The results they did obtain showed much
larger shock stand-off than that predicted by Bush. Some of the difference
can be attributed to an incorrect magnetic field boundary condition. The

value used is consistant with an interaction parameter based on dipole
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moment, such as in Bush's original notation, but they have used the refer-
ence magnetic field basis (as in the present work) and so their magnetic
field is essentially everywhere twice as great as it should be. This
would indicate that their plotted results could be corrected by multiply-
ing the interaction parameter scale by 4 (since the square of the magnetic
field is included in it). Wu has acknowledged that Bush's results were
also plotted incorrectly.* The same correction factor applies to the
curve attributed by Bush in that plot. The present author has repeated
the computations (to be discussed later) and has found that the quasi-
linearization scheme truly converges only for small S. Using a different
scheme, the large difference in stand-off with that of Bush has disappeared
leaving only a small expected effect due to viscosity. A comparison of
these various computations is given later,

Bass and Anderson (Ref. 30) have applied an order of magnitude quasi
one-dimensional analysis in order to estimate the MHD drag for hypersonic,
blunt body flow. An effective duct length is involved. There is reason-
able agreement with the experiments of Seeman (Ref. 31).

Seemann and Cambel (Ref. 32) and Nowak, Kranc, Porter, Yuen and Cambel
(Ref, 33) have also made such estimates but in terms of the dimensionaless
parameters. The computations involve integrating the Lorentz force on the
fluid. These estimates generally turn out to be high because they fail to
account for alteration of the flow., Improved methods of estimating the

drag will be indicated later in this report.

Porter, R, W. and A, B, Cambel, "Comment on 'Magnetohydrodynamic-Hypersonic
Viscous and Inviscid Flow Near the Stagnation Point of a Blunt Body'', AIAA
Journal, 4, 1966.

Smith, M. C.,, Schwimmer, H. S. and C. S. Wu, "Author's Reply", AIAA Journal
4, 1966,




CHAPTER II

FLOW REGIMES

2.1 Introduction

The purpose of this chapter is to evaluate and compare the flow
regimes for flight magnetohydrodynamics and for simulation in the
laboratory by means of hyperthermal plasma arc jet units.

When an entry vehicle enters an atmosphere, it is subjected first
to a rarefied flow. It may have an electric charge accumulated on its
surface depending on its past history and may experience electric drag
(Ref. 34). The charged particles in the nose region will separate and
produce a region of local charge non-neutrality called the plasma sheath.
Passing into denser regions, a bow shock will form - the flow being con-
tinuum in nature but describable only with the full Navier - Stokes equa-
tions from the forward "surface" of the shock to the body, an incipient
merged layer (Ref. 35). In this region, and at lower altitudes, the
denser flow has a large momentum and reactive forces can arise due to
interaction between the flow field and a magnetic field if a magnetic
source is provided within the body. At still lower altitudes, the shock
thickness is thin enough so that a viscous shock layer is formed behind a
shock discontinuity. Finally, the flow in the shock layer becomes essen-
tially inviscid except near the wall in the Prandtl boundary layer.

In this study, we are principally concerned with regions where the
magnetogasdynamic effect is significant enough to be used to advantage.
Thus, we expect a continuum theory to be applicable and neglect effects
which are important only at extremely high altitudes. The extent of the

regime of interest and the sub-regimes which occur at lower altitudes are
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discussed in the rest of this chapter. First, however, we will briefly
discuss differences that exist in laboratory simulation.

If photoionization is neglected (say below 80 km), the flight free
stream is essentially a neutral gas and is shock heated into an ionized
gas in the shock layer. On the other hand, in the laboratory the gas is
pre-ionized due to heating in a thermal arc torch. A second difference
arises from the flight free stream being essentially uniform and un-
bounded whereas the laboratory jet is non-uniform (but hopefully symme-
tric) and finite. Since magnetic field coils provide dipole-like fields
at large distances and the field falls off rapidly in strength, the
interaction in the pre-ionized region seems less important. Likewise,
non-uniformity would appear less important if one had a small body so
that the flow would be locally uniform near the interaction zone. So
far, these presumptions have not been verified categorically. Other dif-
ferences exist. For example, the type of gas, Mach number range, character-

istic length, temperature and viscous effects differ:

In Flight Laboratory
Air Argon
10< M <50 2<M <6
L~ 10 ft. L~ 1 in.
T, low T, high
viscosity unimportant viscosity important

Differences of this type are included in the discussion that follows.

2,2 Types of Regimes

Our description of the entry conditions was based on the dynamics of

the flow. At various altitudes, the flow will have the various character-
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istics mentioned and can be classified into aerodynamic regimes, Simi-
larly, the thermodynamics of the flow undergoes changes and these may be
classified into thermodynamic regimes. The introduction of magnetic

sources leads to magnetogasdynamic regimes., While coupling of the

phenomena occurs, this categorization is useful.

With respect to the aerodynamic regimes, we seek to answer on the
basis of simple estimates the following questions: At what altitudes and
laboratory conditions may the flow be considered continuum? When can the
shock be treated as a thin discontinuity so that the Rankine-Hugoniot re-
lations apply? At what conditions is the flow effectively viscous only
very near the body surface (except in the shock itself) so that the
Prandtl boundary layer applies? Finally, if a plasma sheath of local
electric charge excess exists, is it merged into the aforementioned layers
or is it a sublayer. To answer these questions we seek information with
respect to:

1, The continuum flow regime characterized by the ratio of mean free

path to the characteristic body dimension.

2. The Rankine-Hugoniot shock characterized by the ratio of shock

thickness to the shock layer thickness.

3. The Prandtl boundary layer characterized by the ratio of boundary

layer thickness to shock layer thickness.

4, The plasma sheath characterized by the ratio of the sheath thick-

ness to boundary layer thickness.
Our approach is orientated toward conservative estimates of the consistancy
type. For example, we will assume a Prandtl layer and determine when it

becomes so large so as to invalidate the assumption.



The basic question under thermodynamic regimes is whether or not
the flow is in chemical equilibrium. In magnetogasdynamic regimes the
important factor is whether or not the flow is magnetically dominated.
Since the principal interest of this work is aerodynamic like flow and
the dynamics relating to drag, the aerodynamic regimes are discussed in
more detail.

To formulate the analysis, let us define the flow conditions. For
flight: Earth atmosphere, flight Mach number M from 8 - 50 and a
hemisphere nose of. 10 foot diameter with negligible afterbody. For the
laboratory flow: argon plasma at free stream pressure p_ from 10.4 to
10.2 atmospheres and free stream gas temperature T from 1000 - 4000°K,
free stream Mach number 2 - 6 and a hemisphere body of 2 inch diameter.
At this point we comment that higher Mach numbers are difficult to

achieve in continuous plasma facilities, but that the important factor
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seems to be the shock layer enthalpy and density (Ref. 36) and these can

be simulated.

2.3 Aerodynamic Regimes

The appropriate dimensionless parameter to determine whether the

flow is continuum or rarefied is the free stream Knudsen number

>

_W
K.n°° =D
where A is the free stream "mean free path" between collisions and D
is the characteristic body dimension in the crosswise direction. When

Kn_ << 1 there are many collisions of a typical particle in the nose

region and the flow is expected to be continuum. Conversely, when

(2-1)
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Kn_ >> 1 the flow is rarefied. In between, transition and slip flow,
regimes exist (Ref. 37). Figure 2 shows the overlap of the Knudsen
number values of flight and laboratory flows. For these estimates the
model atmospheres of References 38, 39 and 40 were used for flight.

For the argon plasma, we assumed that local thermodynamic equilibrium
exists and used the real gas viscosity of Reference 41 to define an
effective mean free path according to simple kinetic theory. The momen-

tum averaged mean free path is (Ref. 42)

n

— (2-2)
Z Py Yy
T

where is the viscosity, p, the density of species i and V., is the species
n Ys Py i P

T =

w jn
N

mean molecular speed

V‘ = SRTi

2-3
i ¥ (2-3)

where the summation is over the heavy species. For a monotomic gas with

the heavy particle temperatures about equal to the gas temperature (Ref. 42)

n
M osn  TEE (2-4)
32 P N oM

For convenience, we have used the equilibrium density of Reference 44
which considers only the first degree of ionization without excitation.

Figure 2 suggests a flight continuum regime below 300 kilofeet and
a laboratory continuum regime above 0.0005 atmospheres or lower depend-
ing on the temperature.

The Hugoniot shock assumption requires
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A
Kns =3 << 1 (2-5)

where A is the shock stand-off distance. When the inequality holds, the
shock thickness is thin with comparison to the shock layer and a discon-
tinuity iﬁ the supersonic flow can be assumed. The shock thickness is

approximated by A  since it is established in a few collisions. We can

conservatively estimate

A=.78¢ Rb (2-6)

This is Seiff's correlation (Ref. 45) for high Reynolds number flow and
is surprisingly accurate for moderate supersonic to hypersonic speeds.
Viscous MHD flow will have a greater A. To make an order of magnitude
estimate, the equilibrium values of the density ratio ¢ are used. For
flight, the tables of Huber (Ref. 46) are convenient while for laboratory
flow the method of Arave and Huseley (Ref. 44) is applicable. These
assume a Hugonoit shock and so we are really demonstrating consistancy,
as noted before.

The results, shown in Figure 3, indicate that a Hugoniot shock is
present below about 250 kilofeet in flight., In the laboratory, a thick-
ened shock must be expected. The thickening is due to the viscous and
low density condition of the gas. The Hugoniot approximation appears
less valid there, but since the situation is border-line and the alter-
native of considering incipient merged theory involves great difficult-
ies, the assumption seems justified with forebearance.

The Prandtl boundary layer requires

8.1,

A << 1 (2-7)

where Ab is the boundary layer thickness. This can be estimated fram

.1l
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the solution for Hiemenz stagnation flow (Ref. 47) and the matching of

the far flow to the shock pressure coefficient.

A
bolc — “e
A 2.4 ReA

3 (2-8)

Figure 4 was constructed using the equilibrium calculations as before.
Once more, the flight situation appears better. The boundary layer
would appear to be distinct below 250 kilofeet while viscosity seems
important over much of the shock layer for some laboratory flow.

As mentioned earlier, the plasma sheath is a region near the body
where charge separation can occur. The importance of the sheath depends
on the extent of the sheath, the charge available for separation and the
electrical bias of the body. A flight vehicle will float at a potential
determined by its past history while a sting supported model will be
grounded unless provisions are made. Whether the model or vehicle has a
conducting or insulated surface may be an important effect but even this
is complicated by the possibility of shorting out insulated areas through
a highly conducting plasma sheath,

In the type of facility of interest here, the gas will experience a
large potential near the electric arc of the torch. The potential will
decrease away from the arc and probably reach a low level where models
are normally inserted in the flow. However, because of the presence of
supersonic flow, a bow shock is present and charge separation and an
electrical potential may be generated at this surface. If the model is
regarded as at ground potential and this potential is maintained with
electrical contact with the facility as a whole, a sheath will exist to

match the potential of the body to the flow.
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In any case, the sheath acts as a region of potential gradient to
match the body bias to the flow. A sheath would seem to be important
only if such a bias exists. In this way, a grounded model may not exper-
ience any sheath effects so long as the plasma is also at ground potential
(away from the electric arc) and charge separation is negligible at the
shock.

Since the sheath is a wall phenomenon, it is of importance for heat
transfer, Here the interest is in the outer flow and so it is sufficient
to show that the sheath is small in order to neglect it, We mentioned in
passing that it may be possible to maintain a potential across a shock in
a highly ionized gas. This may occur naturally due to electron effects.

A similar charge separation occurs with the shock analogous to a wall.

The estimates therefore may have some applicability there too, although

the high level of ionization required would probably remove the effect from
the regime considered.

If the sheath is collisionless, analysis shows the sheath thickness

is approximately (Ref. 48)

(collisionless) AS = XD (2-9)
where XD is the Debye length
%
7 KT
Ap = -——4meez ) (2-10)

where k is Boltzmann's constant, n, is electron number density and e is
the electron charge. The Debye length has several physical interpreta-
tions. Besides the results of analysis showing it to be the physical

length over which a potential gradient can be maintained, it has micro-

scopic significance as a measure of the range of inter particle forces
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due to electric charge. If the sheath is collision dominated (Ref. 48)

(collisions) As = ()\D/Rb)z/3 (Re)-1/6Rb (2-11)
Thus, the sheath parameter is

(collistonless) B/ =1/2) /R, Rel/2/¢ (2-12)
(collisions) 8 /8 = 1/2 O /R ) rel/3/c (2-13)

Since both ratios are about the same, we have employed Eq. (2-12)
in Figure 4. The sheath is a very thin sub layer.

We conclude that the continuum, Hugoniot shock and boundary layer
theories are adequate below 250 kft. (See also Ref. 49.) However,
the assumptions hold up less well in the laboratory and so viscosity
is included in some of the theory to follow. However, we do not con-

sider the incipient merged layer.

2.4 Thermodynamic Regimes

Equilibrium flow generally exists below about 100‘kft. (Ref. 51).
It is substantially frozen above 300 kft, Nitrogen reaction slows equi=-
libration (Refs. 36 and 52). However, a partially frozen gamma gives some
correction and the average non-equilibrium profiles behind a normal
shock (Ref. 52) do not differ too much from the equilibrium giving some
justification for equilibrium estimates and the use of constant properties,
The laboratory situation is more complex even though use of a
monotomic gas simplifies the thermodynamics of the mixture. The pre-

ionized gas may have a high level of ionization (though slightly ionized)
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resulting in a lower effect "

gamma', The lower temperature ratio would
prolong relaxation. However, if the initial ionization is higher than the
equilibrium value, a reduced rate may still be sufficient to bring the
level to the equilibrium value. There is even the possibility of equili-
brium occuring faster because of the presence of pre-ionization and the
avalanche effect that follows. Equilibrium has been established for
atmospheric argon plasmas at low electric field to pressure ratio (Ref. 54)
but much remains to be done for shock layer flows.,

The chemical equilibrium flow regime would appear to occur below 100
kilofeet and in high pressure laboratory flows. In other situations the
kinetics are of possible importance. Fortunately, the thermodynamics are
uncoupled from the dynamics if one makes the constant property assumption

which is discussed in the next chapter. Non-equilibrium then enters in

only when the dimensionless parameters are calculated,

2.5 Magnetogasdynamic Regimes

The results of Levy, Et. al. (Ref. 28), indicate that the shock layer

will be magnetically supported when

ess -] 1.6
or in terms of the natural interaction parameter S when

i
g5 _L.6 <L>2
~ e(1h) B

where 0 is recalled to be the nondimensional stand-off distance. The
theory, reviewed in Section 1.2, indicates a limiting SS exists and that

this is approached at some finite interaction parameter S. If we assume

an undistorted dipole field (Rem = 0) the condition is

(2-14)

(2-15)
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s> 1T6 1+ 8)° (2-16)

Unfortunately, 6§ is an unknown function of S and increases rapidly with
it at high interaction. Bush (Ref. 5) gives a table of SS and § for
€ = 1/11. The last value in the table is perhaps representative of the
limit since solutions for an attached layer apparently could not be

found beyond that point. In this way, we estimate

S ~— (2-17)

When S > S*, the critical natural interaction parameter, the flow may be
magnetically supported.

Since S contains the field strength, it is not possible to delineate
the regimes as for the aerodynamic case. At any altitude magnetic sup-
port may be possible. Further (2-17) was based on theories not properly
accounting for the effect of €. Levy considered € -+ 0 and Bush the
single value of 1/11. Accordingly, we defer these estimates until a
later chapter when the effect of ¢ is studied in detail.

As mentioned earlier, the magnetic effect is coupled with the flow
and will certainly alter the values of the parameters of the estimates
of regimes, This will occur in two ways.

First, for example, the shock stand-off distance is known to be

greater for MHD flow. Thus, ratios such as A /A will become smaller

b.1l.
and better justify a boundary layer assumption. Inspecticn of other
parameters shows similar effects, Thus, our estimates may be conser-

vative for MHD flow. Part of this may be negated within the coupling.

For example, if the boundary layer grows as fast as the stand-off or



- 28 =

faster our suggestion would not hold true. Again we defer this discus-
sion until the results of the theory are presented,

Second, the transport properties are effected. Even if the normal
transport properties were constant in the layer, the magnetic field
variation would cause the effective value to vary. 1In this investigat-
ion the effect on the fluid tensor conductivity is accounted for by
using the electrodynamic equation including the Hall effect. When this
theory is employed, the conductivity involved is the normal one and so
the effect is properly accounted for,

Finally, the magnetogasdynamic effects may introduce problems with
the boundary conditions. For example, a current sheet in the shock may
invalidate the momentum Hugoniot relation neglecting MHD effects. For-
tunately, this effect can occur only at high magnetic Reynolds number
and the calculations of the following chapters indicate aerodynamic
plasmas have low Rem. At low Rem, the magnetic field is little dis-
torted by currents and the magnetic pressure is the same on both sides of
the shock. Thus, the MHD effect cancels out for the case considered.
Further, an infinitesimal sheet is practically impossible. Thus, if we
assume that the gas dynamic discontinuity appears before a region of
high current density we can use the regular Hugoniot relation and expect
the effect to be largely accounted for.

A second problem occurs at the body when a sheath is present, A
current boundary condition for an insulated body says the current normal
to the surface vanishes., But a highly conducting sheath may give an
insulated body the appearance of a conducting one with respect to the flow.
Since the sheath is neglected in further development, this question cannot

be answered within the scope of the present theory.
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The fact that the estimates indicate the sheath is very thin suggests that
it is at least partially collisionlgss. One would have to match an appropriate
sheath theory to the solution for the outer flow. One might be able to
decide whether the sheath acts in the way suggested above by considering a sheath
that is backed by an insulated wall. The question is whether or not the sheath
can sustain a current normal to its other surface. If so, the sheath will

cause the body to appear electrically conducting.



CHAPTER TIII

EQUATIONS OF MAGNETOHYDRODYNAMICS

3.1 Basic Assumptions

The assumption of constant properties in the shock layer near the
stagnation region allows great simplification of the problem at hand.
By constant properties, we mean density, viscosity, electrical con-
ductivity and any other thermophysical properties that may be invol-
ved. This simplification occurs in two ways. First, the number of
dependent variables is reduced because these properties no longer vary
but are fixed behind the bow shock and the Hugniot conditions allow
their explicit determination. Second, the equations take on a sim-
pler form and often can be reduced to ordinary differential equations
(similarity). This characteristic is well known in the hypersonic
flow literature (see the books by Hayes and Probstein (Ref. 35) and
Truitt (Ref., 52)) and is considered in detail for the MHD problem in
the next chapter.

The question immediately presents itself as to the validity of
the constant property assumption. It should be emphasized that we
are not suggesting that these properties (like density) are constant
everywhere, but do not vary only in the region behind the bow shock
(Figure 1) and not too far from the center line axis. In Figure 6,
we show the ratio of stagnation point density to the value behind the
shock as a function of the shock density ratio, a measure of Mach
number., The calculations assumed a constant ratio of specific heats
and constant molecular weight and are tabulated by Keenan and Kaye

(Ref. 55). It is apparant that for ¢ < 1/4 the variation of demsity
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along the center stream line is less than 10%. Thus, the constant den-
sity assumption is reasonable, according to this criterion, for moderate
supersonic to hypersonic speeds or for Mach numbers greater than about

3 depending on the gas. This criterion may be questioned since a con-
stant gamma was employed under rather ideal circumstances (isentropic
flow) and because the variation of the transport coefficients was not
included. The first point is not critical because we are interested

in the extent of compressibility and not the details of dissipation.

Table 2 shows the variation of these thermophysical coefficients,
using real gas, equilibrium thermodynamics and isentropic flow. (Refs
41, 44, 46). The table contains the coefficients divided by density
because it is convenient to divide out the density in order to form
dimensionless groups in actual analyses. It appears that the proper-
ties can be assumed about constant along the center stream line from
the shock to the stagnation point.

Figure 7 shows the variation in the lateral direction behind the
bow shock which is assumed toc be a circular arc. The variation is
limited to about 10% to about 30° off axis except for the laboratory con-
ductivity. Toward the body, compression will tend to stabilize the
values. This consideration suggests that the approximation may be useful
to about 45° or to the vicinity of the sonic line, After this line, com-
pressibility will be important. It appears that the application of MHD
forces moves the sonic line further from the stagnation point as suggested
by Ericson and Maciulaitus (Ref., 27). As discussed earlier, most of the
drag interaction occurs in the stagnation region and so we may feel rea-

sonably coafident in the constant property approach. This applies so
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long as the flow is aerodynamic like and not magnetically supported. For
the later, the large density variation approaching the no-flow region
would invalidate the assumption. There is evidence that this approx-
imation is valid up to the point of shock layer lift-off since theories
for the present approximation and the magnetically supported layer have
common features to their solution where the lift-off is believed to occur
(Levy, Ref. 24). Thus, information as to when the flow is magnetically
supported can be had by noting when the constant property system has no
solution.

In addition to constant properties, we assume continuum flow and a
Rankine-Hugoniot shock as discussed in Chapter II.

We consider steady flow. Therefore, the hypothetical flight vehicle
cannot change speed or altitude too quickly. In the laboratory, the test
time cannot be too short. The limitations for MHD flows should not be
appreciably more severethan classical gasdynamic flows since electro-
dynamic phencmena propagate at high speeds.

The magnetic field will affect the transport phenomena in two ways.
First of all, the collision cross-sections will be altered because of the
presence of an electric field relative to the fluid. The kinetic theory
of Chapman and Cowling (Ref. 42) shows that the distributiocn function
will not be Maxwellian in this case. We neglect this effect when esti-
mates of the transport coefficients are made here. However, the results
of the present theory will be in terms of dimensicnless groups and so
this effect is not important except where applications are made of the
theorye.

A second effect occurs because the transport phenomena acquire

tensor characteristics in the presence of a magnetic field. For example,



there will be currents generated at right angles to the local electric
field due to the Hall effect. The tramsport of current, heat and momen-
tum will tend to be reduced by a factor (Chapman and Cowling, Ref. 42)
1

1+ CH2
in the direction perpendicular to the magnetic field where CH is. the local
Hall coefficient. We neglect this effect except on the current when we
include the Hall effect.

We use the Newtonian pressure tensor, derived by Schlicting (Ref. 47)
and neglect the gravity body force as is customary in most gas dynamic .
analyses (Prandtl and Tietzens Ref. 56).

We consider ; quasi-neutral plasma where the electric body forces
and convection currents are neglected in the momentum and current equa-
tions. The calculations of Schluter (Ref. 57) show this to be a realis-
tic assumption. However, as pointed out by Spitzer (Ref. 58), the excess
charge density shﬁuld not be set to zero in Gauss' law. This does not

’ L
lead to an inconsistancy as this equation serves only to define the
local excess charge density and is the only equation in which the excess
charge density then occurs.

Relativistic effects are not included because the flow velocities
of the present application are small compared with the speed of light.

Finally, we note that the derivation of the equations to follow

from a microscopic theory would lead us too far afield and we refer

to the references cited.
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3.2 Continuity Equations

As in conventional steady hydrodynamics, conservation of mass

requires (Cambel, Ref. 59)
v . X =0 (3"1)

where Vis fluid velocity and v the vector differential operator. In

magnetohydrodynamics, for steady conditions, we have

Zo:l:o (3'2)

where J is current density.

3.3 Momentum Equation

Newton's second law is reflected in the Navier-Stokes equation for
magneto-fluidmechanics (Cambel, Ref. 59)
p%.—_--VP-I-VOT‘FJXE (3-3)
where p 1is density, p pressure, ;r‘ viscous stress tensor, ’ZE magnetic

field intensity and

dv
_=z

dt

LS

'sz.xx (3-4)

in invariant form (Ref. 47). The viscous stress tensor is (Ref. 47)

V erT= n v x (3-5)
where 1 i1s viscosity.
Thus we obtain
V<ﬁ+2>=VxVxV+nV2V+-1-JxB (3-6)
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3.4 Ohm's Law

In its simplest form, Ohm's law is

I

J=0E' (3-7)

~

where'g' is the electric field relative to the fluid. This equation is

inadequate in some cases and so we write

J=0 - E (3-8)

where g is the tensor conductivity which is a function of the magnetic
field intensity and includes the directional characteristics of phen-

omena like the Hall effect (Ref. 60). If we apply the correction of

Section 3.1

]
1+ CH2

where CH is the Hall coefficient to be defined later., This approxima-

J= E' (3-9)

~

tion has been investigated by Levy (Ref. 4) who showed it to be incor-
rect to varying degrees depending on the flow parameters and geometry,
His results, however, indicate it may be better to use Eq. (3-9) rather
than not to include Hall effects at all. Since this involves a simple
correction of g, if we assume an average CH, we do not consider it
further explicitly in the theory that follows. Indeed, when we include
the Hall effect exactly, Eq. (3-9) is unnecessary. The vector form of
Ohm's Law that we now consider involves a linear combination of cur-
rents and so is equivalent to the tensor form Eq. (3-8).

Following Sears and Resler (Ref. 60) we consider a three fluid
model of electrons e, ions i and neutrals a, with mass m,, m, and

mo= m, with electrons and ions of opposite charge e. That is, a
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single degree of ionization is assumed. The simple kinetic theory
(Cowling, Ref. 61) uses mean collision times Tei’ Tia and Tea which are
assumed to be known from a detailed solution involving the collision
integrals, It is assumed that the particle drag forces are proportion-
al to their relative velocities and that the light electrons have
achieved an equilibrium terminal velocity and that the ion velocity is
about that of the gas velocity. Dynamical equations for the electroms,
ions and neutral gas can be written neglecting viscosity and thermo-

electric effects and using the quasi-neutral approximation. These are

combined to form Cowling's equation

en (E+VxB)+[1-<1+2:Tea> <1+_>_l
ia

-1 u@ Tea - -1
[(we 'rea) + (1 + __zwiTia> l(Zwi "'ia) j[ BJ +

: (3-10)
Te 1 We Tea \-1
[1-2<1+—> <1+—2w———-> ‘]gx3+
"a iTia ' ~
n _-2 -1 w. T. --1.-1
e i ia _
<1+“a> [(we Tea> +<——-2 ) ] B[zpexg JxBx3B
where n is number density, P, is electron partial pressure and w the
cyclotron frequency
_eB _eB )
We " m Wi " om, (3-11)
e i

W' =3 | (3-12)
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the cyclotron frequency per unit field strength, we get

2y.' T,
ne (E+VxB)+Vp = 1.( L 41 >J+JxB+—1———1—o
e ~ ~ ~ ~ Te we \Tei Tea ~ ~ ~ ne 2
<1+ ;-)
a (3-13)
[ 2‘pe X E‘~ JxBx B]
Let
_ 1 1 -1
e (i)
ea ei
the electron collision time and let
n
= —= (3-15)
C=h +n
e a
be the degree of ionization and let
en.T,
e
be the electrical conductivity and let
eTe
LI - -
CH - (3-17)
e
be the Hall coefficient per unit field strength. Let
2e Tia 2
c.'-= (1-0a) : (3-18)
i m,

be the ion slip coefficient per unit field strength., Ohm's law becomes

= - ' - - ' - -
I=0@E+¥xB -G LxB-Vp-c' GxB-Tp) x5 (3-19)
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Now, Dalton's law of partial pressure shows V P, = %V p if
z ¢ = 0 which we might infer from the constant property assumption.
Thus, if @ or ZP is small, we expect that Z'pe can be neglected. This

is the case if

e
or
e (:._2_:> r
v <<Sjxb (3-20)
pY
2
where
-2
- g B'L
S = 5V (3-21)

where j and b are nondimensional. This relation will be satisfied for
attached shock layers because pressure gradients are small., Thus,

Ohm's law simplifies to
J=0(E+VXB)-CH'[ng-Ci'JxBxB] (3-22)

This equation has been derived by Demetriades (Ref. 62) who obtained

it from the second approximation of the solution of the Boltzmann system.
When this is done, the coefficients C.', Ci' and o are identified with
integrals involving the details of the collisions. Because the free’
path theory by-passes these details it offers no information as to these
values. In any case Eq. (3-22) is the appropriate macroscopic equation
and we regard the coefficients as known. This equation can be simpli-
fied further by neglecting the last term due to ion slip due to the
imperfection of coupling between ions and neutrals. This can be done

when
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= ' -
Ci Ci B« 1 (3-23)

Ci' is given by Eq. (3-18). Letting

= "B -
CH CH B (3-24)
where B is a reference magnetic field intensity, we find

2me 2 Tia
¢ =% - T G (3-25)
i e
This immediately suggests that the ion slip effect is much smaller than
the Hall effect because of the ratio me/mi. Further, as @ - 1 or ioniza-

tion increases, the coefficient decreases. The ratio Tia/Te can be

written (Chapman and Cowling, Ref. 42)

Tia a ei
_Te = 1 <E 2 (3-26)
V2 Aéi

where Aij is the collision cross-section. Typical values indicate (Cambel,

Ref. 59)
3>2 =0 0%
Aéi
Thus,
Eg 2 29 Aei 2
C,~2/Z m (1-a) n, 7‘;> Cy (3-27)

Finally, for both large and small ionization (De Vota, Ref. 63)

A.ei s Aia (3-28)



[+

and so

m
e
C; ~ 2/2 a, a(l -a) Cy (3-29)

Even for large Hall coefficient, Ci is very small., In the next chapter
CH is estimated to range to order 10 for 10,000 gauss field strength.
Even for 100,000 gauss, ion slip would appear unimportant in the
present application. Thus, the form of Ohm's law to be considered is

£=0'(E+Xx£)-CH'£xB (3-30)

~

3.5 Maxwell Equations

The equations governing electromagnetic phenomena related to
magnetofluidmechanics are summarized by Cambel (Ref. 59). For steady

state media with constant permeability |4 and permitivity o

V-E=p /o (3-31)
v . E'= 0 (3-32)
Z xE = 0 (3-33)
VxB=pJ (3-34)

where Pe is excess charge density. For the gases of interest, which

are non-magnetic, p takes the value for a vacuum.
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CHAPTER IV

ANALYSIS OF HIGH SPEED MAGNETOAERODYNAMICS

4.1 The Problem

The purpose of this investigation, as stated in Chapter I, is to
give an account of magnetoaerodynamics for aerodynamic-like flow about
a blunt body. In particular, the effect of magnetoaerodynamic forces
on the body in a high speed environment such as exists in planetafy entry
or simulation of entry in the laboratory is of interest.

As a general problem, this is an immensely complicated undertaking.
But almost immediately one can make certain assumptions so as to sim-
plify and specialize the approach. We consider the nonlifting config-
uration of Figure 1, a hemisphere at zero angle-of-attack with a dipole
field source at its nose center of curviture. We make the assumptions
discussed in Chapter II: continuum flow, a Hugoniot shock and no plasma
sheath effect on the outef flow, According to our estimates, these
assumptions are valid below 250 kft. and for flight simulation with
argon plasma at supersonic speeds above ambient pressures of 0.0005 atm,
For the present, we include viscous effects since the estimates indicated
their possible importance for laboratory flow.

At this point, one might begin a detailed computer analyéis including
the effects of chemically reacting flow in mixed regions of supersonic
and subsonic flow adjacent to a catalytic body. This type of complete
analysis has only recently been undertaken for conventional aerodynamic

re-entry and after a decade of simpler analyses.



- 42 -

It seems reasonable to parallel this course of action in magnetoaero-
dynamics. As in conventional hypersonics (Ref. 8), we will use the
constant property approximation discussed in Chapter III. Theory and
experiment indicate that this approximation is valid for Mach numbers
of about 3 and greater. It is expected that the corresponding MHD
theory for aerodynamic like flow will be valid for moderate super-
sonic speeds and hypersonic flow as well.

The specialized boundary conditions for the equations are stated
in the following section., When we assume a bow shock concentric with
the body nose and that the dipole field source is located at the
common center of curviture, a simple functional form of the solution
is suggested for the stagnation region of interest. This form allows
reduction to ordinary differential equations, a two point boundary
value problem with the second point unknown, the shock location. The
system is highly coupled and non-linear.

The remainder of the chapter deals with the formulation of the
system of equations and the formulas for the magnetoaerodynamic coeffi=-
cients of interest such as the shock stand-off distance and drag
coefficients. The range of dimensionless groups that arise are
estimated. In this way, the mathematical statement of the problem is
completed. The solutions, analytic and numerical, are discussed in

subsequent chapters.

4,2 Boundary Conditions

We consider axisymmetric flow without variation in the azimuthal

or § direction and postulate the existence of a bow shock.




Experiment (Ref. 64) indicates that the bow shock is nearly concentric
with the nose for moderate supersonic speeds, and greater, up to near
the body shoulder. As well, we assume a Rankine-Hugoniot shock as
justified in Chapter II. The coordinate system is shown in Figure 8.

Uniform continuous flow requires that
- Py Y, cO8 8 = P Y
r

where V1 is the radial component of velocity behind the shock. Thus,
r

Vil = - €V cos ) (4-1)

where € is the shock density ratio. Tangentially,

Vél =V, sin e (4=2)
VvV =0 4-3
®, (4-3)

for initially parallel flow.

A momentum balance through the infinitesimal shock requires

2

2 2
pa+pavco cos e='. P1+p1V1'1

or using (4-1)

2 2
P; = P, + (1-€) p, V, cos 8 (4-4)



At the body, to which we assume the shock layer to be adhered

V. =0 (4-5)

For viscous flow, the no slip condition is

Veo =0 R, # @) (4-6)
=0 © -
%, ®, # =) (4-7)

being arbitrary for inviscid flow (Re = o)
The electric boundary conditions are similar., For a nonconducting

free stream

J. =0 (4-8)

J =0 (4-9)

while for a highly conducting body the potential is uniform and there-

fore

Eg =0 (4-10)

where‘g is the electric field vector.

The magnetic field boundary condition is

B (r = =) = By (r » o) = %$ (r==®) =0 (4-11)
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and
3
Br (r—=0) = Bo (-—) cos B (4-12)
B 3
By (z = 0) =—5 (ﬁD sin 0 (4-13)
B, (x~0) =0 (4-14)

That is, we assume that the source is that of a dipole (Ref. 65). At
this point, we cannot state the general conditions referred to the shock
or body because distortion of the magnetic field will be appreciable
except for small magnetic Reynolds number, For the limit Rem = 0, a
useful approximation, the field is undistorted as we shall see. For

this special case

Br1 = Bs cos 8
B
By = —g sin 8 (4-15)
1
(Rem = 0)
B =0
1
or
B = Bo cos O
To
Bo
; 0) Be == sin 8 (4-16)
Rem = o
B =0
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where Bs and BO are reference magnetic fields related by
B 3

(Rem = 0) == (%) (4-17)
o s

For the general case, Rem # 0, the local value of magnetic field will
not be that when no interaction is present, say Bs or Bo' The dis-
tortion will even be present within the body except for highly per-
meable bodies which we exclude. We seek a solution valid from body

to shock

Rb Sr s Rs

and the equations, (4-11) through (4-14) are external to that interval.
We must match separate external solutions with this interval and its
solution in order to define the correct boundary conditions. This is

deferred until appropriate solutions become evident.

4.3 Functional Forms

Lighthill (Ref. 8) has .shown that simple functional forms exist for
the corresponding non-MHD problem relating to stagnatiqp region flow.
This apéroach was extended by Bush (Ref. 5) for the inviscid MHD
problem without the Hall effect and later by Wu and co-workers
(Refs, 26 and 29) to include viscosity. It was used by Levy (Ref. 4)
to study the two dimensional subsonic flow with the Hall effect but
without viscosity or deformation of the flow and magnetic fields. The
form of similarity to be employed is rather well established and requires

only generalization to the present problem.



The continuity equation can be written in spherical coordinates

(Ref. 66). Without ¢ variation

3 (.2 1 2 = -
ar<rvr>+rain9 2 sinBVe> 0 (4-18)

with boundary conditions (4-1) to (4-3) and (4+5) to (4-7) written

H

for V(r,8) as

V. (R, 8) = - ¢V, cos @ }

V. (R, 8) =0 (4-19)
Vy (Rg, 0) =V, sin 0 } (4-20)
Vg (R, 8) =0 (Re # =)

% (Rg 8) =0 } (4-21)
vcp (R, 8) =0 (Re # ®)

A simple functional form is suggested. The following satisfies the

equation and boundary condition.

V} =2 V, Fi;! cos B (4-22)
Vé =-eV, F'(x) sin 9 (4-23)
X

where x is the non-dimensional distance
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x=

r
= (4-24)
%

We note that F(x) is non-dimensional and the scale factor ¢ V;
corresponds to the value behind a normal shock, Equation (4-18) does
not contain gp gso its form can not be recognized from it.

The previous development is equivalent to introducing a stream

function for the velo;ity in the meridian plane (r,8) (Ref. 8).

¥, = - F(x) sin’0 (4-25)

which gives us the equation for the stream lines. It can be thought of
as the first non-vanishing term of a power series expansion about the
center stream line (Ref. 52). The velocities are obtained from dif-
ferentiation of (4-25) and so follow a similar expansion. The first
terms of which are given in (4-22) and (4-23). A direct expansion

for zp with provision for Yw(r,e) = - Y$(r,-e) gives the first term
V& =e V_ G(x) sin 8 (4-26)
' X

where G(x) was chosen for convenience in the manner of the previous
X

case,

The magnetic field obeys an equation similar to that for velocity

and (4-13) and (4-12) are boundary conditions that can be satisfied by

B, = ZBo M(x) cos B ' (4-27)

x ¥
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Be =-3B, M'xgx) sin B (4-28)
Bcp =B _N(x) sin 8 (4-29)
X

with an analogous function for the flux lines

¢B = « M(x) sinze (4-30)

RS
TR; ’

Rs/R'b 2 x2 1 and x < 1 and that the intermediate region boundary

We note that M and N will have separate solutions for x >

condition is obtained by matching. For the outer region with J3=0,

(3-34) and the above functional forms give

"
- M,g'-l- 2 0

5 = (4-31)
X
fo;: x> Rs/Rb .. The solution is
C
a2 i
M= - + C2 X (4-32)
Since B must vanish at infinity (4-14) we find that c, = 0 . Thus
C
S § -
M= p- (4-33)
and so 3
) R, 3 _
B_= 2B C (—r> cos B

By = B, C; é) sin @ (4-34)



for r > R,s . We recognize (4-34) as dipole behavior. Thus the correct

specification of the boundary condition for M in terms of a shock reference

B is
s

B (Rs,e) = B cos )

Bs (4-35)
Be (RS,S) ==3 sin 8

which was the condition assumed by Bush (Ref. 5). It is exact for the
present approximation. A dipole source will appear as a dipole in the
region forward of the shock. It will be altered only in magnitude according
to the deformation that occurs behind the shock. Thus, the appropriate

boundary condition for M in the interval is

w(z2)-1 = (4-36)
2 3,

where Bo is the stagnation point field that would exist without field
deformation (by definition). This is not a complete boundary condition
since Bs is unknown. We must match the inner solution., Neglecting currents

within the body (external to the source) again

C
_ 1 2
M= - + C2 X (4-37)
-C
for x <1, Let C =-—2- then

¢



B = Boé>3zcl [1 -C (—E—b>’] cos B
By =—B§é)3 2c, [1 +2( (;-_;)3] sin 0

which satisfies the other boundary condition (4-13). It is apparent from

(4-38)

(4-13) that,

c; 1/2.

and so

L3
Br BO<R—:> cosG-B°@ cos 0

B 3
=22
By = 2@’;) sine+BoC,’ sin 8

The actual stagnation point field strength can now be written in terms of

(4-39)

the value that would exist without deformation.
B(R,,0 = o) = B (1-( )

Along the body in general

B_ (Rb,e) =B, (L-( ) cos®
(4-40)
B
Be (R.b,e) == a+ ZG) sin 0

and so G is recognized as the fractional reduction of the stagnation field
strength due to magnetic field deformation. The stress is such that the 9
component is increased by a fraction 2 C . This is due to the continuity
of flux and the nature of a dipole with a factor 1/2 in (4-38). Clearly,
(4-39) is not dipole behavior at the body surface. An assumption of dipole

behavior at the surface, as was made by Smith, Schwimmer and Wu (Ref. 29),



corresponds to an actual dipole only for no field deformation. Such defor-
mation leads to unphysical results, namely a higher magnetic field strength
at the shock than at the body. This corresponds to having another magnetic
source at infinity.

The constants c, and Bo are found by matching the intermediate flow.

Combining (4-27), (4-28) and (4-39) we find

it

M@ =3 a-0)
(4-41)

M) =-5 A+20)

N

Now, c is not known ahead of time. The complete boundary condition for

M takes the form of 4 equations (4-36) and (4-34). We shall see that M is
second order and requires only two. The extra two equations give the defor-
mation fraction { and the shock reference Bs . If we wish to specify Bs
in an "inverse" solution then B is determined instead.

The most important result of the matching process is that it is correct
to specify the field as being dipole like at the shock but not at the body
surface except for the limiting case of no field deformation in which case
either reference is satisfactory.

Returning to the other functional forms, we note that the current obeys
the same continuity equation as the velocity and magnetic field. The boundary

conditions are also consistent with

Jr = 2¢ v, o1 Bo K§§2 cos O (4-42)
X
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J9 =- V o, Bo K'(x) sin @ (4-43)
x
I, =€ V% 0y By Lxgxz sin B (4-44)
2
iJ = - K(x) sin” 9 (4-45)

where tJ is the current stream

factors are motivated by J escl

function in the meridian plane. The scale

Vi B  behind the shock with V, = ¢ V_ .
o 1 @

The electric field is governed by VxE-= 0. We can write the following

for an azimuthal loop.

j Z'xlg da=0

PE-a=o0
2
J E (R,0)f sinfdgp =0
o ¥
2mr qp (r,8) sin8 =0
E (r,0) =0 (4-46)
¥
for arbitrary r and 8 . Thus the azimuthal electric field vanishes for

axisymmetry. The other components satisfy (3-34) which in spherical coordi-

nates is

aEr

d

H =
Hi=

3
g; (rEe) -

=0 (4-47)
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which is satisfied by

= 4
E =¢ V“BOH(x) cos B

(4-48)

=
L]

9 € V_ Bo Hixz sin 6

The quantity analogous to the stream function is the electric potential.

Except for an arbitrary constant which depends on the body bias of voltage

$ =cv, B R HE cosd (4-49)

The functions have now been introduced and we write the boundary conditions

in terms of them. For example, from (4-19)

v (RB,B) -eV_ cos 8

and from (4-22)

Vr (Rs,e) 2 V F(xs) cos B
2

X
]

where x, = Rs/Rb . These combine to give one of the F boundary conditions.

The others follow.
F(X) = - X2/2
s s

F' (xs) = - xs/e

F () =0
F'(1) =0 (Re # )
G (X)) =0
G =0 (Re # ®)

K (Xs) =0 (4-50)



K (@1 =0 (insulated body)
H@A) =0 (conducting body)
B
=1 _s =1a.
M@E) =3 5 M@ =350-()
1 Bg -1
t E - e c— ' = -
M'(X) = - 3 5, M'(1) =3 (1 +20)
C_(X_,8) = 2(1 - €) cos’ @
(g2 €) cos
where
P - P
Cp=——2 (4-51)
Po Yoo
2

the pressure coefficient,

We note that the boundary conditions are split between the body x = 1
and shock x = X, , a two point boundary value problem. It turns out there
is one "extra" boundary condition which locates the shock or second point.

The dimensionless shock stand-off distance is given by

R -
8 = N Rb =x =1 (4-52)

Rb s
which is added to the quantities sought.

The boundary conditions have been formulated and functional forms deter-
mined that satisfy these conditions and some of the partial differential
equations, those of the continuity type. In the next section these functions
are substituted into the remaining equations (3-6) and (3-34) and we show

that indeed they are the correct forms. For small 8, the 8 dependence divides
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out and the equations involve only the functions F, G, etc. These are the
ordinary difference equations which determine the functions and the solution
of the problem at hand. The various scaling factors combine into dimensionless

groups which we identify.

4.4 Ordinary Differential Equations

We start with Ampere's law because 'j.t is the simplest and results in a

direct connection between certain functions. In spherical coordinates

(Ref. 66), Eq. (3-34) is

1 3 . _ -
Tsa0 38 (Bcp sin 8) = Jr// (4-53a)
13 = -
"7 ar (B =y M (4-53b)
3B
1.3 P S S -
T or B T 53 M (4-53c)

where ¢ variation is omitted. Substituting Egqs. (4-27) to (4-29) and Egs.

(4-42) to (4-44) into Eq. (4-53)

B
o 1 P N . _ K
E T 5int 39 Gein0sinB) =2 eV, B o, —5 cos 8
X
- Bo 1 a K'
—R; X ox (x 2 sin8) =-pe V, B o, = sin®
B B
21 ¥ )] -2 12 Ta % ] -
Rb % 3% [x - sin B Rb T 2x2 cos B
e V. B o, — sin 8
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Carrying out the indicated differentiation, the 9 dependence divides out

and we are left with
N = e VmoleK

N' = e v, o, Rb K'
'L2M L
" +'-§ = He v, %1 Rb X
X
The first and second equations are degenerate. This is because we have
already used V . J =0 to find the functional forms and the latter is not

an independent equation but is obtainable from Eq. (3-34). We note that

X, N, M, L, K are dimensionless and so
Rem = e V_ o, R (4-54)

is a dimensionless group, the magnetic Reynolds number. Some authors do
not ine¢lude the factor ¢ but since ejw represents a shock layer velocity

it is included here. The independent equations are

N = Rem K (4-55)
M = 1’2-‘ - Rem L (4-56)
X

Equations (4-29), (4-42) and (4-55) indicate that the azimuthal magnetic

field and the radial current are directly related.

; R
=2 = 2 Rem — tan 08 (4=-57)
Bo eVé oy B T



When one does not include the Hall effect Jr does not exist. Thus %p
is an induced component requiring non-zero magnetic Reynolds number and

the Hall effect. Once more, it is emphasized that
Rem = pe V_ oy R = 0
is a mathematical limit which perhaps could be written more consisely

Rem —» O
or

Rem << 1
We mean that the dimensionless group is very small and not that any single
term is actually zero. Indeed, most of the terms will appear in other
dimensionless groups where the combination may not be small.

It is noted that Eq. (4-56) reduces to the equation for dipole behavior
(4-31) when Rem = 0., Thus, when we use this limiting case we are really
neglecting distortion of the magnetic field. The distortion will be
studied in what follows but the forementioned limit is a useful basis for
comparison and as it turns out, a useful approximation.

Equation (4-55) allows one to replace N with K in subsequent equations
reducing the unknowns by one. Another functior: that need not be considered

further in the system is the excess charge density Pe which enters only in

Eq. (3-31). Formally, we solve for it using Eq. (4-48).

IOI

2 P o) .
(r Er) + rsin 6 98 (sin © Ee)

wof®

Pe ©

o

T

r
0, € V_B 2|| 1
le ® 0o x H + 22x H' - 2H cos B (4-58)
X
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This quantity is not considered further since it is not connected with the

dynamics or drag directly.

Ohm's law (3-30) is considered next. This contains ;IJ x E which is

£x3=r(JeBcp-Jche)+9(Jchr-JrB)+

9

¢ W, By= g B,)

Using the functional forms of Eqs. (4-27) to (4-29) and (4-42) to (4-44) and

(4-55)
- 2Ta M'L - Rem KK' 2
ixf]}l-oleVmBo [r xz sin” 6+
~  M.-RemK’
g 2 - sin 8 cos O + (4=59)
X
~ ] - 1
cpZMK ME sin9cos€]
X
Similarly, the term
1 ]
veB=cv, B [f LE_RemKE .24,
X
S , MG - Rem KF __
8 2 x3 sin © cos 8 + (4-60)

AZMF'-M'F
® 3

sin 8 cos 6]

X

Using these relations and the functional forms for i atid g, (3-30) yields

the three equations
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t t [} ]
2% cos § = H' cos 0 + MC zRem‘KF - CH' B ML ZRem kK sin2 8 (4-61)
p 3 X x
K' H' MG - Rem KF ML - Rem KZ
-3 sin 8 = -5 sin 8 +2 3 - ZCH' B, 3 sin 8 cos 6
x X
] 1
% sin 0 82'3 (MF' - M'F) sin 8 cos 6§ =~ ZCH' Bo E—%}-&-—K- sin 8 cos 8
X X
The dimensionless group
Cy = cH' B . (4-62)

is recognized. CH is the Hall coefficient and we recall that CH' was
the Hall coefficient per unit field strength. For small 8, which is the

current approximation

sin 8 =8 - 0 (8)

2 (4-63)
cos 8 =1 - %— + 0 (94)

At 45° the errors are 10 and 2% respectively when 0 (93) is neglected. The
error decreases rapidly toward 8 = 0. Using Eq. (4-63) in (4-61) and
retaining terms to order 92 we find that the §* dependence again divides

out leaving

=2 (4-64)
X
2
k' =g - 2 Ze-RemKF 'ZRemKF +2¢, -—-—-—-—-—-}ﬂ"ge’“K (4-65)
X X
v oMt v oM .
L= B ME_, HEHEK (4-66)
X X

The equation for L may be regarded as an algebraic one to be coupled with the



differential system. These are the ordinary differential equations for the
current.

The momentum equation contains several terms to be evaluated. The
vorticity is

1 d
r sin 8 36

-
or

ing V) +8
(sin 6 cp)

H =

VxV=rt (-t V) +
~ ~ w

(4-67)

STl 3 1 3
JEE XCAARES A

and using the functional forms of Egqs. (4-22), (4-23) and (4-26)

eV,

~ 1 - 2 "
[?§ cos 0 -9 & sin 6 + @ -Z-E-—35L sin 9] (4-68)

R X x x

VvVxxVs=
~o ~

The acceleration term associated with it is

¢ e:2V2 2 2
L L 1
VxVxVs= Zm [QXGG-QF(ZF-XF') sin28+
N 2 2 2
g2 X6 = F§2F =X F) 5in g cos § + (4-69)
x
1 1
® 2 _F_Q_%_EQ sin B cosG]
X
The viscous term is (Ref. 66)
v 3V
2 »[1 o) <2 r) 1 9 . T
V V=1 |=s == T + = (8in § —%) -
~ r2 dr dr 1_2 sin 6 lo1¢] o8
2V
r 2 . ]
3 - 30 (51n9Ve) +
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N AV 3V
1 3 2 ) 1 o) 8
Br— —<r —_ )+ =(sin 8 —xz ) -
*rz dr ar> £2sin 8 38 Y] )
v, . 2 3 Ve n,
2 28
r sin 0
v
3V 3V ®
ol LG 2) =" G Cme5®) -]
“r r sin 0 r sin B
Expanding with the functional forms
€ V \2 " ! " 3
VZ,Y_,= 020]’isz4-2Fcose+e-xF"'+42xF'-4Fsin8+
Rb = X X
. x2G" - 2G
=5 sin 6] (4-70)
x

The dynamic pressure term is
ve-z+2>=-lv<v2+e vic >

where Po/e is the shock layer density and Cp the pressure coefficient of

Eq. (4-51). The expanded form is

2 2

v 2 2
1 2 2 ~TL & Y= 3 <4F 2 F'“ .2
5 Vv +eV C =1 |5 = (—5 cos" 8 +—5 sin § +
2 ( o p> 2 TR ox \ & Z
2 C
S_ -2
31n9+€>]
22
~re Yy 1 3 ,art 2. B2 2
+9[Rb * 38 (—x-z cose-l'? sin"@ (4-71)

2 C
S 2.
‘l-xz sin9+€ )]



There is no ¢ term here since =2 = 0. We now have all the terms for the

oy

momentum equation (3-6). The ¢p components add to give

2¢ V ' ' e V_n 2
0= = FG3GFsinecose+ =1 %G

Rb X Py sz X

- 2G
3

sin 0 (4-72)

2 MK' - MK .,
lé:VwBo —3—-—s1n9 cos 0

X

+ 20

The scaling parameters combine to form dimensionless groups. Defining the

Reynolds number as

o, V oy V
e = P11 R Po

(4-73)
L ™
and the interaction parameter as
2 2
op B R, 01 By Ry
S = = v (4-74)
1Y Poo Voo
Po Vl
where ¢ = — = v As before, the 8 dependence divides out for small 9.
1 @
2 (F'6 - €'F) + = (°G" - 26) + 25 (K' - M'K) = 0 (4-75)

This is the ordiﬁary differential equation representing the ¢p momentum
equation. The r and § momentum equations add to

2 2

v -2 2 '
% 2°° % (4_?4(:0829 +F—2 sine+ ——sin9+—2>
R_b X X X
(4-76)
x2G'G - F'(2F - xF") 2 x’F" - 2F
% 51n9+i-é-—-—4'—-6089+
% x
[ 1
25 ML-IZ{emKK Sinze
X
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2 3 X 30 x4 cos 6 + xz sin 6 + x2 sin' § + < =
Ry (4-77)
22 2" -3"| L
9 X G - E(ZF - x F'") sin 6 cos 8 +.l_ -xF"' + 2 x F' - 4F sin 8
Re 4
x _ X
2
+ 28 -@-—:-%ﬂg-sinecose
X

The pressure coefficient can be eliminated by cross-differentiation setting

32 a2

3x 38  38dx

Again for small 8§ the e‘dependence divides out.

2F(x3F"' - 2x2F" - 2xF' + 8F) + 2x2G (xG' - 2G) -

b SIS N - 2. v
Re (x'F 4x"F" + 8xF 8F) + (4-78)

25> [M(xL' - 2L) + Rem K(2K - xK')] =0

Having eliminated the pressure coefficient, we must convert the boundary
condition (4-50) in terms of it. Substituting (4-50) in (4-76) evaluated

at the shock x = xs .

F'' (x) M(x YL(x)
" s _ s s __1 1 .1 -
F(xs)-i-——Re— 28 xz €2+2 (e nQa Re xS) (4-79)
S

This is the so called vorticity boundary condition which replaces the pressure

boundary condition in Eq. (4-50). We retain the viscous term instead of
neglecting it as did Smith, Schwimmer and Wu (Ref. 29), Therefore, we do

not assume a thin viscous boundary layer in the present formulation.
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The differential equations are now complete. The equations and
boundary conditions are summarized later. When this is done, it
becomes evident that the boundary conditions are of sufficient order
to satisfy the composite order of the system with one additional which
gives the shock stand-off distance. First, however, we derive some
auxiliary equations which give the aerodynamic and magnetoaerodynamic
coefficients.

The equations derived so far reduce to those of Smith, Schwimmer
and Wu (Ref. 29) when the Hall effect is excluded. When the viscous
terms are omitted, the equations reduce to those of Bush (Ref. 5) if
attention is paid to notation and the definition of dimensionless

groups. Without the MHD effect, they reduce to those of Lighthill (Ref. 8).

4.5 Magnetoaerodynamic Coefficients

The coefficients relating to force and pressure are defined in this
section.

The pressure coefficient has already been defined in equation (4-51)
and is governed by equations (4-76) and (4-77). Of particular interest
is the pressure coefficient on the body surface. Equation (4-77) may be
integrated. To order 8

2 2 ' 2 F'"'(1 2
C (1,8) = ¢ +ed [c(l) - e’ - B 425 i1 - Rem k(1)?]]

o

where C is the constant of integration, the stagnation pressure coefficient.
L
This can be written

2
= - -80
c_(1,8) Cpo 69 (4-80)
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where (? is the pressure relief function
"1 N
@ -r ®?-ecm? +-E—§£ll - 25 {M(l)L(l) - Rem K(1)2}] (4-81)

The first two terms vanish for Re # « (no slip) and the third vanishes

for Re = ». The stagnation pressure coefficient

c = 5 (4-82)

is obtained by integrating (4-76) along the stagnation stream line,

X

s 2
= gy . b xF - 2F
€ =2Q-3) -3z I A dx (4-83)
o 1 X

We note that the MHD forces have no effect on the inviscid stagnation pressure.
At shock layer lift-off, not within the scope of the present theory, this
pressure must essentially vanish and so there is a pronounced effect for
magnetically supported shock layers. For the limiting inviscid hypersonic

flow with €= 0 we have the Newtonian pressure coefficient Cp = 2,
o

We define a component of the total drag coefficient as

Drag of component i

i_ querz

(4-84)

where 2

poo VOO
q = ) (4- 85)

the dynamic pressure. The direction of the drag force is that of the free

stream velocity.
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One of the components is drag due to surface pressure (see Truitt,

Ref. 52)

/2

CD = 2 Cp(l,e) sin  cos 8 d 6 (4-86)

P (o]

The present theory is valid only in the stagnation region. We assume that
the theory holds to some eL and that beyond the pressure coefficient is

proportional to cos § . This forces a zero value at the body shoulder.

8
CD =j L 2(C - @ sinze)sin f cos Bd B +
P o Py

/2
J 2(Cc - GJsin2 8.) Los © sin 8 cos 64 8§
8 P, L’ cos BL

L

where we have approximated 8 m sin 8 for 8 < BL . Integrating
CP

C =-§-C -(28-—22)sin29L+

D po

sin® 0, (4-87)
P

3
We must determine GL empirically. For ¢ = 1/11, @ = 2.65 (Bush Ref. 5)
and Cp = 1.909. Experiment (Ta Li,Ref. 67) indicates that Cp = .93 .

o P
This corresponds to sinzeL = 1/3 or GL = 35°. Using this value

-1 _ Al . -
¢, =35 (¢ 66’ ) 5 Bs 3cpo (4-88)

We note that the pressure coefficient of Eq. (4-80) vanishes at about 35°
when @ = 3Cp . Therefore, we will use Eq. (4-88) only when the coefficient
in non-zero 31) to that point. This accounts for the inequality restriction
in Eq. (4-88). The inequality may be violated in MHD flows of large induced

pressure relief (Bush,Ref. 5). For the case of a vanishing pressure coeffi-

cient before 8§ = 35° we cut off the integration at Cp = 0 and find
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C 2
Po ¢ >3 (4-89)
C = — . > C -
Dp 2 ¢ ? P,

The base drag is not predicted by the present theory which is limited
to the stagnation region. Base drag is due to suction accompanying a
low pressure area behind a high speed vehicle. Newtonian theory predicts

a zero base pressure, For a flat base

« Py 2
CD = - Cp = 3 = 2
B B pw Vcn ch Mcn
2

where y_ is the free stream "gamma' based on the speed of sound and
M_ is the flight or flow Mach number. For the lower supersonic speeds,

Hoerner (Ref. 68) suggests

Yo "o

where K is a correction factor such that

Lim K=1
M -
@

The data reported in Reference 68 suggest the simple relation

1
K=1 ¥
[=+}

for M > 2. 1In the laboratory, the presence of a sting will reduce the

base drag. For

n
S

(4-90)

8:3 u|mu
Y
N
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where DS is the sting diameter, the base pressure is virtually uneffected
by the presence of the sting (Hoerner, Ref. 68), a desirable state of
affairs. Thus, we can correct the previous relation to read

6, —r (D[ 3]

B Yo M

which includes the effect of the sting.

Now if the sting is rigid and the pressure transducer is located at
the body-sting bearing surface interface, we need not consider the sting
further. 1If, however, the body and sting are connected with the force
transducer aft of this system, we need to add the drag of the sting. This
can be done by applying conventional aerodynamic estimates (Truitt, Ref. 52)
depending on the sting configuration.

The base drag is normally a small percentage of the total drag parti-
cularly at high speeds. Even at moderate supersonic speeds it is generally
less than 107% of the total drag. Therefore, its prediction is not too
ctitical with respect to accuracy. The MHD interaction will affect this
prediction but we neglect the effect here. This is reasonable here
because the base drag would have to be increased by an order of magnitude
to introduce substantial error.

The present theory uses the shock density ratio as a parameter rather

than Y, and Mo The following expression approximates Eq. (4-91)

(@]
]

%—(69-1)(1- e - 1) ; € >

=

(4-92)

I
o
®
A
=
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where we have dropped the sting correction entirely. Equation (4-91)
with another term for sting drag, if present, is recommended for more
precise correlation of experimental data.

Skin friction results in a positive stress in the 6 direction on
the body surface. This stress, divided by the dynamic pressure, is
defined as the skin friction coefficient.

.M a"e>
FB ™ °r /. - R

O
I

26 . -
e F"(1) sin 8 (4-93)

Since there may also be flow in the azimuthal direction

cp = 2 ;') sin 8 (4-94)
® Re

these quantities integrate to produce a viscous drag in the flow direction

/2 2
c. =2 C. sin 9§ d8 (4-95)
D, F
F o 8

and a rolling moment coefficient

/2 2
c, = 2 C, sin'g &8 (4-96)
F o F
v
where
Cl = Torque (4_97)

o R

being positive by convention when the torque is in the +4p direction.



The reference moment arm is the body radius. Using the limiting Qt ideal

as with pressure

The stagnation theory of Fay and Riddel indicates (Hayes and Probstein,
Ref. 50)

e 1.53

3] +/Re

while flat plate theory (Schlicting, Ref. 47), more indicative of the flow

away from the stagnation point, has

.332
+/Re

For 8 > BL we use 1/5 of the value for CF as suggested by the above

proportionalities. Choosing QL = 450, the integration gives
=.4 e o
CDF 3 3e I () (4-98)

Similarity, Equation (4-97) integrates to

c =§ c' (1) (4-99)

ip

#l°

The MHD or Lorentz drag is given by
1

2
9 TR,

where the integration is over the region of interaction. For the present

c JxB d(vol.)

DMHD T j‘vol.

approximation, this extends from the body to the shock and from the stag-

nation stream line to some GL . Using Eq. (4-59) for J x B
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4 O, R
c =-————I I [(JxB) cos 8 + (J x B)

@ &

. 2 .
(-sin Q)Jr sin 8d 8
X 2
=-%I'—-R§mx(1)2+fs(-M'L+2‘f-2R§“’K)dx (4-100)
- 1

with GL = 45° ., This choice is rather arbitrary in the constant property

approximation because one can argue for a corresponding value of the effective
value of the electrical condﬁctivity, presumably lowering as one extends
BL . Seemann (Ref. 32) has used QL = 30° on the basis of sonic line consid-
erations. Ericson and Maciulaitus (Ref. 27) argue for 60° because of the
possible movement of the sonic line with MHD interaction, Our choice of
45° is intermediate and reflects a desire to use oy for the effective con=-
ductivity becausé it is easy to estimate on the basis of the normal shock
relations,

The force associated with Eq. (4-100) acts on the magnetic source
and is transmitted to the vehicle through the structural elements. In the
same manner, any Lorentz force in the ¢ direction causes a reactive torque
on the magnet and its structure. Analogous to the Lorentz drag of Eq. (4-100)
and the friction rolling moment coefficient of Eq. (4-96), the MHD rolling

moment coefficient is

X
c, = - % j S MK' - M'K dx (4-101)
MHD 1

being positive in the +tp direction (Figure 8).
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The total drag coefficient sums to

C.=2¢C +C, +C.  +¢C (4-102)

(4-103)

The actual drag and torque can be obtained from the coefficients by using
their definitions of Eqs, (4~84) and (4.97). The rolling moment is

a consequence of the Hall effect.

4,6 Dimensionless Parameters

The dimensionless parameters arose naturally in Section 4.4 as a com=
bination of the scaling parameters for the dimensionless functions such
as F, G, etc. Use of dimensionless parameters is important for several
reasons. First of all, it is possible to formulate the problem in a
minimum number of variable parameters, as is well known to the experimenter.
We need do a minimum number of numerical calculations when they are used.
Secondly, they defer the question of units to actual evaluation of the
dimensional parameters and the solution does not depend on the system of
units used. The dimensionless parameters may be evaluated independently
and so a convenient system can be selected for each depending on the units
used in tables, charts and equations in the literature.

We could have introduced the dimensionless parameters in Chapter III
when the basic equations were first introduced. However, one is forced
to choose a reference velocity, magnetic field, etc. in order to do this
and the choice became more evident once the problem was more completely

defined, Having a knowledge of the boundary conditions and the functional



forms we were able to choose scaling references so that the dimensionless
functions, such as F, G, etc.,, would be of order unity. This is important
numerically.

For a discussion of the significance of the dimensionless parameters
and their interpretation in terms of ratios of force, etc., we refer to

the book by Cambel (Ref. 59). The dimensionless parameters are summarized

below
(shock density ratio) € =p,/ Pl (1-30)
(Reynolds number) Re = p_ V_ Rb/'q1 (4-73)
(interaction parameter) S = oy Bo2 Rb/p°° v, (4-74)
(magnetic Reynolds number) Rem = Moy eV, Rb (4-54)
|
(Hall coefficient) CH = CH Bo (4-62)
eBo
= Te (3-17)

Tables for normal shocks can be used to evaluate the dimensionless
groups. These are readily available for flight conditions using real gas,
equilibrium air. The data of Huber (Ref. 46) and Hansen (Ref, 69) are
particularly suited for the flight conditions defined in Chapter II and
were used to calculate the data of the charts of this investigation
(Figures 9 through 18). For the argon plasma, equilibrium thermodynamics
was emploved. The data and formulas of Arave and Huseley (Ref. 44) were
used.

The body radius was taken as 10 ft. for flight entry and 1 in. for
the laboratory conditions. 10,000 gauss stagnation point field strength

was used, Figures 9 through 18 can be corrected to apply to particular



values by noting the definition of the parameters and multiplying by an appro-
priate constant.
The Hall coefficients (Figures 17 and 18) were calculated by noting

(Spitzer, Ref. 58).

s Te
1 m
e e
so that
eBo o
CH=_€ Te = e ne Bo (4-104)

where ¢ and m_ were obtained from the references cited (Ref. 44 and 46)., The
speed of light appears in the denominator of the RHS of Eq. (4-104) if
Gaussian units are used.

In order to give the reader a concise picture of the range of the
parameters, we refer to Table 3. The range is rather extensive but narrowed
if one takes into account that certain extremes are improbable. For example,
one would probably not encounter very large Mach numbers at low altitudes
or vice versa. We refer to the typical values of Table 3 for a more

realistic estimate of conditions.

4,7 Summary

The mathematical problem has been defined, In order to solve the

problem the following system must be solved.

%" = 24 + Rem x> L= 0 (4-56)

XH' = 2k = 0 (4=64)




x?(K' - H) + 2(MG -~ Rem KF) - ZCH(ML - Rem Kz) =0

sz - 2(MF' - M'F) + ZCH(MK' - M'RK) = 0

QPGP - 2%°F" - 2 x F' + 8F) + 25°G(xG' - 2G) -

2

-;—e (x4F"" - 4X°F" + 8xF' - 8F) +

ZSx2 [M(xL' -~ 2L) + Rem K (2K - xK')] =0

2(F'G - G'F) +-%; (x26" = 2G) + 25(MK' - M'K) = O

~!

[« 2}

(4-65)

(4-66)

(4-78)

(4-75)

over the range 1< x < X with the boundary conditions of Egs. (4-50) and

(4—79)‘

F(1) = 0
F'(1) = 0 (Re # ®)
G(1) =0 | (Re # =)
k(1) = 0 (insulated body)
H(1) = 0 (conducting body)

w1 =3 (1 -6)

ML) = -3 (1+26)
at the body. At the shock
2
F(xs) == X /2

F'(x) = - x /e

CF"'(x) M(x ) L (x)
F"(x,) +-4—§E—§- - 25 sx 5 5= ii + 2 q% -1 Q-

Re

1

X
s

)

(4-105)
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G(xs) =0 (4-106)
K(xs) =0
B
-} 2
o
B
o

We note that the order of the system in 2 in M of Eq. (4-56), 1
in H of Eq. (4-64), et¢c. The total order of the system is 2 + 1 + ,.... = 10,
Six boundary conditions are specified at the body and 7 at the shock for
a total of 13, The three "extra" conditions fix the values of X s Bs/Bo and
c making the system determinant in terms of the 5 dimensionless parameters
defined in Section 4.6. 1In this sense the problem is well posed and we
presume, because of the physical nature of the problem, that only one solution
exists, If the differential equations and boundary conditions are satisfied,
we assume that we have the unique solution to the problem posed.

The magnetoaerodynamic coefficients are a function of the solution and
are given explicitly as such in Section 4.5.

While the problem is well defined, the solution is quite difficult in
the present form. Solutions are discussed in the next chapter. Special
forms of the system are studied with attention to the effects of the dimen-
sionless parameters one at a time. Some of these special forms are best
handled if one considers the inverse problem where the dimensionless para-
meters are specified in terms of references at the shock rather than at
the body. However, the present statement of the problem is complete and in

terms of the natural parameters, that is, parameters that are normally known

a griori.
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The procedure of this investigation was to obtain solutions by the
most convenient method available, often an inverse method, but to present
the results in terms of the natural parameters of the problem (Section 4,6).

The analytic and numerical procedures follow in the next chapter.




-079-'-

€EAPTER V

SOLUTIONS

5.1 Introduction

This chapter describes the methods of obtaining solutions to the
mathematical problem formmlated inm Chapter IV and summarized in Section
4.7, Due to the complexity of the system to be solved, the methods will
be primarily numerical., However, we start off with an amalytical solution
of the inviscid, non-MHD problem and show how this can be used to obtain
a first approximation for the MHD drag.

The analytical solutiom also serves to introduce the inverse formu-
lation, In many cases, it is mere practical to base the dimensionless
parameters on shock references, For example, the magnetie interaction
parameter may be based on a reference magnetic field at the shock, Ore
can often simplify or even eliminate the two point boundary value problem
so that it is possible to integrate the system backwards from the shock to
the body. The problem defined im the manmer of Chapter IV requires the
satisfaction of a number of boundary conditions at two points (the shock
and the body) at once, One must solve the problem “simmltaneously" rather
than “march" either forward or backward to the second point. This is
because not enough initial conditions are known at either single point.
Formulation of the inverse problem allows one to fix enough initial con-
ditions for direct integration in many special cases. The general problem

is equally complicated in either formulatiom,
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5.2 First Approximation

The MHD drag coefficient is given by Eq. (4-100), We consider invis=
cid flow without the Hall effect or magnetic field deformation. For this

case the magnetic field is given by (Section 4.3)
=X -
M= 3 (5-1)

Without the Hall effect, CH = 0, the current function of Eq, (4-66) is

=5 (5-2)

so that Eq, (4-100) is

X .
c ='% Se j s xF +F dx (5-3)
1

qﬁHD x6

We now study the case of small interaction (small S). In the limit S = 0O
there is no characteristic length in the problem that either vanishes or
diverges. The stand-off distance, boundary layer thickness, etc, simply
approach their non-MHD values., This suggests that the problem can be
handled as a regular perturbation in S (Van Dyke, Ref. 70). We expand

2

F = Fo + SF, + ST F, + ...

1 2

x = x, +Sx_ + 8% x S (5=4)

so that
x +Sx + ...
-3 [SJ“O 1 xF'+F 2]
2y °6°dx+0(S)

X

1 xF' + F
[o] (o}

6
X

=‘% e [(xs + sxsl + .00 = 1) f d(x-1) + 0(52)]

o
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and to order S
C =3 Se f 5 dx (5-5)

We expand Eq. (4-78) in terms of the perturbation. For inviscid flow

2"- " _
ZF(X3F"' - 2x2F" -2xE' +8F) +s X E 3XF 3F _ 0
p 3
2F(x3F"'-2x2F"-2xF‘+8F)+0(S)=0
o o (o] o o

so that Fo is given by

3l|l 2" 1

xF -2xF"-«2xF "'+ 8F (5-6)

o [o] [ o

But this is just the equation for F without the MHD effect, the problem
considered by Lighthill (Ref, 8). The boundary conditions can also be

expanded in S, Those for zeroth order are those for the non-MHD flow

Fo(l) =0
_ 2
Fo(xso) = - xso /2
Fo'(xs ) = - X le 5=-7)
o o
" _ 1 1
Fo (xs ) = - = + 2( re 1)
o €

where the stand-off distance is related to

6 = X, - 1 + 0(S)
o

but the problem is that X s the shock location, is not known ahead of
o
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time, Thus, we cannot start an integration at X and integrate to the
o
body, say numerically. We recall that

T 2
X
= EX®
Ve - sin 8 ¢ V
where x = r/Rb. Instead, we could have defined
T
y = E— (5-8)
s
based on the shock radius, as yet unknown. And then let
= 2£()
Vi 7 COS Be vV,
y
(5-9)
]
Vy, = = £ sinf8 eV
8 y . ®

which results in the following replacement for Eq. (5-6) for first order
in £

3: m "o 1 = -
v, 2y£ " - 2yf ' + 8F =0 (5-10)

with boundary conditions

£,(3) =0
=1
fo(l) -T2
1
| = -
£, D =-5 (5-11)
. " N T 1_
£M(A) = - 2 + 2(e 1)
R -
where the stand-off § = -s——R—b' is
&
§=i--1 (5-12)
b




Contrary to Eq. (5-7), the set (5-11) does not contain the unknown shock
position explicitly. Further Eq. (5-10) is third order and we have four boundary
conditions in Eq. (5-11), While this was also true before, the present formu=-
lation has the shock position implicit in only one of the boundary conditions
and the point of the condition is isolated from the three not containing it.
This means that one can use the three as initial conditions for a backward
integration from the shock to the body. One reaches the body when fo =0,
And one can evaluate the shock standoff from Eq. (5-12) when this point is
reached, This is an example of the inverse method. There is no problem
numerically and the problem is said to be reduced to quadrature.

In this rather simple example, the solution of either formulation can be
obtained analytically using the rather extensive linear theory. The three

linearly independent solutions add to

a

4 2, 33
fo =a y + a, y + 3 (5-13)
or
4 2 D3
Fo = bl x + b2 x + e (5-14)

The coefficients are determined by the boundary conditions of Eq. (5-7) or

(5-11), For example,

2
by =- 12- > b, = . -24€
30¢” x_ 6e
by = 2(1 - €) (1 - 6¢) X_ (5-15)



with X given in terms of the positive real root nearest and greater than
o
unity of

2(1-e)(1-6e:)x:-5(1-4e)x':+3(1-e)2=0 (5-16)
o] s}

The root can be found graphically, numerically or by special techniques but

not in a general closed form owing to the high order of the polynomial, In

this sense, the present solution is not completely analytical. We will refer

to these results in the next chapter when the various effects are studied and
compared. At this point we refer only to some empirical results that are obtained
by using the solutions (5-14) and (5-16). When Eq. (5-14) is substituted in

the expression for the MHD drag coefficient (5-5) and integrated one obtains

a relation involving ¢ and X in a rather complicated way. This can not be

o

written in closed form because of the nature of Eq, (5-16). However, numerical

solutions of the simple algebraic problem indicate that

C = 0.0607 Se ’ (5-17)

Do

with an error of less than 17 as compared with the numerical solution. The

: /Se frome = 1/2 to 1/100. A similar

correlation for the shock stand-off is

results correlate very well with C

6 = .78 (5-18)

which is Seiff's correlation (Ref. 45). We note that Eq. (5-17) is correct

to order S while Eq. (5-18) is only for zeroth order or for no MHD effect.
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5.3 Inverse Formulation

The concept of the inverse solution was introduced in the last section.
The reason for this approach is to allow specification of more boundary
conditions at the shock than at the body. In some cases, it is possible to
provide enough initial conditions for a single numerical integration from the
shock to the body. This section concerns the inverse formulation in detail.

The original functional forms were introduced in Section 4.3. In con-
junction with the non-MHD problem, we introduced an alternative form for the
radial and polar velocities of Eq. (5-9) based on the shock reference of dis-
tance, namely the shock radius. Analogously, the shock reference field

strength, Bs’ can be used in place of Bo in the other functional forms as well.

Thus
_ £
V& = 2¢ V;-—$§l cos 8
y
- - p 6]
Vé € V; v sin 8
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where y = r/Rs and Yp = Rb/Rs so that the boundary conditions corresponding to

Eq. (4~105) are

£(1) = -%

£'(1) = -
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at the shock, At the body
£(y)) =0
' =
£'(y,) =0 (Re_ # @)

g(yy) = 0 (Re_ # =)



k(yb) =0 (insulated body)
h(yb) =0 (conducting body)
1 Bo
my) =35 1 -6) 3 (5-21)
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1 Bo
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s

and the differential equations corresponding to Egs. (4-56), (4-64), (4-65),

(4-66) and (4-78) are

yzm" - 2m + Rem_ yzz =0 (5-22)
2,
y2h' - 2k = 0 (5-23)
y2(k' - b) + 2(ug - Rem kf) - 2C; (mf - Rem k%) (5-24)
S
g2 - 2@’ - w'E) + 26, (uk' - m'k) =0 (5-25)
S

2£(s3E"t - 296" + ByE' - 8E) + 2y°g(yg' - 2g) -

L (™ - LyPE + 8yE' - 8f) + (5-26)
S

ZSSYZ [m(y4' - 24) + Rem k (2k - yk')] =0

where the dimensionless groups analogous to those of Section 4,6 are defined

as

€ =p_ / 1 (as before) (1-30)
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We note that there are still as many boundary conditions at the shock as
at the body and so there is no improvement for the general case. However, if
one considers the inviscid problem without the Hall effect, the only boundary
conditions remaining at the body are the first and last two of Eq. (5-21).

We recall that there are three excess boundary conditions so these can be con-
sidered as the forementioned. Enough initial conditions are known at the
shock., One can integrate directly backward to the body which is located when
f(yb) = 0, The last two equations of (5-21) define B°/Bs and the field defor=-
mation @ . The MHD problem, including magnetic Reynolds number effects, but
neglecting viscosity and the Hall effect is greatly simplified, being reduced
to quadrature,

The magnetoaerodynamic coefficients can be written in terms of the inverse
functions f, g, etc. The easiest way to do this is to note the relation between

the old functions and the new.
Rs 2
v =(g2)

R
G(x) = §f g(y)
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The relations between the dimensionless groups are
Rb Bo 2
s (2 s
Rs Bs s

(5-32)

Once the solutions have been found in terms of Ss’ Res, etc,, they can be
converted in terms of the natural parameters S, Re, etc. The latter are

based on quantities that would normally be known.

5.4 Normal Quasi-Linearization

Normal quasi-linearization is an algorithm or procedure which lends

itself to evaluating the nonlinear boundary value problem when the boundary



conditions are split between two or more points. In principle, it can be
applied to the general problem concerned here and in either the direct
or inverse form.

The first step in the procedure is to reduce the order of the equations

- to first order, The usual substitutions are made,

E,=F
F, = F'

Fy = F" (5-33)
F,=F" (Re # @)

Fo =G

Fg = G' (Re # ©), etc,

One can write the system and the boundary conditions in terms of li .

The original equations are supplemented with equations like

d -
=heh

(5-34)

d =
d—x"z -?3 , etc.

and so the price of reducing the order of each equation is an increase in
the number of equations., It is much better to work with the first order

equations because they can be written in the standard form

di .

1 = -
-?’z = ti (11, 52, esecey x) (5 35)

with boundary conditions for the two point problem in generalized form
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G.i (xl’ Fl’ FZ’ eee) =0
(5-36)
Bi (x,, Fls Fzs eee) =0

where there must be at least n equations (5-36) if there are n functions Fi'
If there are unknown parameters, such as the value of Xys there must be
a corresponding number of additional boundary conditionms,

So far, we have only put the system into a standard form convenient
for most numerical analyses including the other methods to be discussed.

In quasi-linearization, the original system (5-35) is replaced by a sequence

of systems (Bellman and Kalaba, Ref. 71)

dFi(k) k-1 _ (k-1)
'-:i—x = fi (Fl ’ Fz ’ L X N x) +
g (5-37)
(k-1)
Y 0f; (F) 5 "eees® (e, ®- ¥ (=)
D ERLF
i h |
such that in the limit
(k) _
Lime, ™ - p, (5-38)

k-~

Each member of the sequence is required to satisfy the exact boundary

conditions (5-=36),

W @

a; (x, Fy 2 s ee0) =0

(5-39)

By (o B, 0, 1, ), L) =0

A process that results in the boundary conditions being satisfied at each

step of the process is called a normal process.




It can be shown (Bellman and Kalaba, Ref, 71) that if the interval

Ixz - xll Se, (5-40)
is small enough, or if the initial guess Fi(o) is close enough
(o) o
|py - 7,2 < cp (5-41)
for
k2N

where for every specified error ¢, there exists an N such that for k 2 N,

F
the sequence converges.

Unfortunately, while one has satisfied the boundary conditions one
may not end up with a solution to the nonlinear equations (5-35). This
means it is possible to converge to an incorrect solution., One can tell
if this has occurred by seeing whether or not the solution satisfies the
nonlinear equations.

The reasons for doing all of this is that the system (5-37) is
linear in the current iteration in Fi(k). The very extensive theory of
linear systems can be used to find the solution for each member of the

sequence no matter how the boundary conditions are split, In linear

theory the homogenepus solution given by the following

(k) .
dF 3f, (k=1), (k=1)_, _ (k}")
1y N4 (F,7F 00 F, .
& s 7 (kD) 1 2 i (5-42)

3

with boundary conditions
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(5-43)

is added to the particular solution of (5-37) with boundary conditions

(k) = '
Fg T =0 (5-44)

so that the complete solution is

k) _ (k) (k) _
Fy = Fip + ZCj FjH (5-45)
j i

The constants Cj are determined by the boundary conditions of the complete
problem, Equations (5-42) and (5-37) are integrated using (5-43) and
(5-44) as initial conditions. After iﬁtegrating to xz’algebraic equations
representing the boundary conditions (5-39) are solved for the constants
in Eq. (5-45). This is a straight forward numerical problem,

In each iteration k, there is one system for the particular system
and as many homogeneous systems as there are boundary conditions. The
conditions (5-44) are such that the latter are linearly independent, It
is possible to reduce the number of systems if some of the initial conditions

are known explicitly. Assume the following are known
(k)
FOOOP

@
7,0

k), .
Fq (%)
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then set

r, Pap =7, ® @) (5-46)

P

qu ® (x) = Fy @ (=)

Then there are q less homogeneous solutions with initial conditions

0 i=1,q
F, ®ap={ j=1,nq (5-47)

Hj éij i=qg+l,n

where we have assumed n original functions Fi'

Since the boundary conditions were satisfied in the normal process,
one must only check to see whether the solution actually satisfies the

non-linear equations. This is done by evaluating Eq. (5-45) at x = X

and using these complete initial conditions to integrate the non-linear

equations (5-35) forward to x,. One then checks to see whether the boundary

conditions are satisfied there. In some cases this will not occur and if
convergence occurs it will be to an incorrect solution.
When the second point, X9s is unknown as in the present application,

the process must be modified slightly. Let

X - X
g = —t (5-48)

X-Xl

2

so that the quasi-linear system is
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d (k) _ (k-1) (k=-1) (k-1)
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k-1) T °% (k-1) ) .
Dy e 10 0 (5-49)
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S A
where
Ax(k—l)= x2(k-l)_ x1 (5-50)

is the previous iteration of the interval. One must make an initial
quess of Ax(o) as well as Fi(o) « One can usually make a reasonable
quess in terms of the boundary conditions and as solutions are found in
terms of parameters, the previous solution can be used for the next
value of the parameter, When convergence occurs, it occurs quadratically
(Bellman and Kalaba, Ref. 71) in a few iterations (seldom more fhan five).
The quasi-linearization process was applied by Smith, Schwimmer and
Wu (Ref, 29) for the current problem without the Hall effect. They
apparently used slightly incorrect boundary conditions but this is
immaterial for the present considerations. In Section 1.2 we noted that
their interaction parameter could be multiplied by a conmstant to correct
their plotted results. The fact that they specified the magnetic field
boundary condition incorrectly at the body, as discussed in Section 4.3,
has little consequence for low magnetic Reynolds number., Their results, to
which we now refer, have been corrected in this way.

We refer to our Figure 19 for the shock stand-off distance that was

found by Smith, Schwimmer and Wu (Ref, 29) compared with the results of



Bush (Ref. 5). Because of the large difference in these results (which
would have been even larger had the forementioned correction not been
applied), the computations of Bush and Smith, Schwimmer and Wu were
repeated in the present investigation. We reproduced Bush's results

using his inverse mefhod showing them to be computatidnally correct.
However, we could not reproduce the results of Smith, Schwimmer and Wu.

Our calculation, using quasi-linearization (marked "quasi' in Figure 19)
was somewhat closer to those of Bush but still too far off for the difference
in Reynolds number., Further, we noted that the solution did not converge
to the correct solution except for very small magnetic inferaction (for
zero interaction our result was identical with Smith, et al.). We suspect
that the same thing happened in Smith's computation and that we both
converged to different incorrect solutions probably owing to slight differ-
ences in the quasi-linearization schemes.

In order to find the correct solution, we applied a completely different
method, discussed in the next section, and found good agreement with the
results of Bush and that the solution obtained was indeed the correct
solution. The solution is marked "extremal" in Figure 19. The difference
is just what one would expect for the difference in Reynolds number., The
results of Lykoudis (Ref., 19)have good agreement with those of Bush and
the present theory.

Accordingly, we have abandoned the quasi-linearization method in
favor of the extremal technique that follows. We refer the interested
reader to the book by Bellman and Kalaba (Ref. 71) for more details of

quasi-linearization. Orthonormalization of the homogeneous solutions is
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particularly important in order to retain accuracy. This and methods
to overcome machine storage problems are discussed in the book and were

followed by the present author,

5.5 Extermal Algorithm

The basic problem of stellar structure in astrophysics is a two
point boundary value problem where the boundary conditions are split
between the center of the star and its edge (Schwarzchild, Ref. 72). The
classical approach is to transform and simplify the equations so that all
of the initial conditions are known except one. The last one is quessed
and the system is integrated forward numerically. The error at the second
point is noted and the process is repeated with a new guess. One continues
the process by extrapolating and finally interpolating for the unknown
initial condition. This can be done by sophisticated techniques such as
the method of false position (Ref. 73). The number of iterations required
is greater than that of quasi-linearization but convergence to the correct
solution occurs when convergence occurs because the boundary conditions
and non~linear equations have both been satisfied automatically.

The present system can not always be simplified so that only one
initial condition has to be quessed. So we form a positive definite
function of the error at the second point

Z(k) - z Bj_ (F]_(k)’ Fz(k)’ e x>2 (5-51)

i
We quess the unknown initial conditions and integrate forward evaluating

the sum of the squares of the error in the boundary conditions of Eq. (5-36)



at each step of the integration. When we have a minimum of Z for the
function of x we have located the "best" value of the unknown second

point for the quessed initial conditions. The value of 2 is the square

of the errors in the boundary conditions at that point and for the present
iteration and this value is noted. The initial conditions are then stepped
in a systematic manner until we have minimized the value of Z at the
second point. This represents convergence. It is convergence to the
correct solution if Z can be made arbitrarily close to zero for then the
boundary conditions to the non-linear problem are satisfied arbitrarily
closely. Since the non-linear differential equations have been used all
along they are automatically satisfied.

One can imagine the system of ordinary differential equations to be
increased in dimension by the unknown initial conditions into a system
of partial differential equations. The positive definite function of
Eq. (5-51) is minimized with respect to the old and new independent
variables. Sophisticated methods exist for such a minimalization (Kunz,
Ref, 73) but the simplest method is to march about in the space continuing
in the direction of decreasing Z.

Geometric arguments show that if one makes a close enough guess to
the correct initial conditions that a solution is insured. Of course, in
many cases the number of iterations is excessive making the method impractical.
For example, in the viscid problem without Hall effect there are only
two unknown initial conditions at the body F'(1) and F"'(l), and yet as

many as 200 iterations were required in order to find a solution at an



interaction parameter of 50. The long time of computation prohibited
going past a value of 100. However, the method is still superior to that
of quasi-linearization which failed to converge to the correct solution
except for very small interaction parameter. There is reason to believe
that the viscous solution merges into the inviscid solution at moderate

interaction. This phenomena is discussed in detail later.

5.6 Other Techniques

At least two other techniques exist for solving the two point prob-
lem. Picard's equation (Kunz, Ref. 73) is similar to the basic equation
for quasi-linearization except the second term in Eq. (5-37) is neglected.
Picard's method is based on a successive approximation so that the non-
linear part is known from the previous iteration and linear analysis
can be used. The second term in quasi-linearization gives a correction
to the successive approximation similar to the slope-intercept techniques
of the Newton-Raphson method for finding roots to algebraic equations,

One would expect Picard's method to be less effective than quasi-lineari-
zation and so it was not applied in the present investigation,

Back and forth integration (Kunz, Ref. 73) involves guessing the
unknown initial conditions and integrating forward to the second point
and determined by the boundary conditions there. The known boundary
conditions at the second point replace those calculated by the forward
integration and the unknown ones are assumed to be those just calculated.
A backward integration is performed to the first point. If the calculated
conditions correspond to the known ones at ghat point within an acceptable

error, convergence has occurred and to the correct solution. If not, the
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process is repeated, Experimentation indicated that this technique to
be inferior to the extremal method for the present application. It was
not pursued further. The extremal method was used to obtain the results
presented in the next chapter. We now discuss some of the details of

the programs.

5.7 Computational Details

The equations of Section 4.7 were used for the viscous MHD solution.
The direct formulation is superior to the inverse when there is the
possibility of a boundary layers where functions change rapidly and are
sensitive to errors that one might incur as one integrated into the layer.
It is better to integrate out of the layer where the viscous effects are
not important and errors in the higher order terms are less important.
Also, one receives the solution as a function of the natural Reynolds
number instead of the inverse one based on the shock radius. The results
need not be cross plotted.

The Hall effect and deformation of the magnetic field was neglected.
The functions G, K, H and N can be set arbitrarily to zero as they do
not appear when the Hall effect is omitted (Smith, Schwimmer and Wu, Ref, 29),

For Rem = 0

as we noted in Chapter III. Only a differential equation in F of Eq. (4-78)
and an algebraic equation for L of Eq. (4-66) in terms of F remains. These
are combined and the fourth order equation is written as four first order

equations as shown in Section 5.4. There are two initial conditions known,
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F(1) and F'(1). We guess F"(1) and F"'(1) and integrate forward until
Eq. (5-51) is a minimum, F"(1) is stepped and the process is repeated
until Z is a minimum with respect to both x anf F"(1). This process is
repeated within steps of F'"'(l) until a minimum is found with respect to
all three. We required that Z < 10"4 and all boundary conditions to be
satisfied within 1%. The magnetoaerodynamic coefficients were calculated
after each iteration in order to insure their convergence with the rest
of the solution,

No special difficulties were encountered except the solutions
required excess time, typically 10 minutes, for S greater than about 10
for a Reynolds number of 100. Fortunately, it became evident that the
viscous solution was merging into the inviscid one at moderate interaction

parameter,

The effect of non-zero magnetic Reynolds number was studied using

the inverse formulation of Section 5.3 without the Hall effect or viscosity.,

This is essentially the problem treated by Bush (Ref. 5) where one is able

to integrate directly from the shock to the body. With Re = ® and

CH = 0, there are a sufficient number of boundary conditions specified

at y = 1 in Eq. (5-20). These constitute the initial conditions and the

integration is performed backward until f£(y) = O which locates the body.
The solution is in terms of the inverse parameters Ss and Rems and

after obtaining it we solved for the natural variables S and Rem using

Eq. (5-32). We intended to present the data versus S so the fact we had

not complete control of this parameter did not matter, However, it is de-

sirable to present the data as a family of solutions for various Rem, It

is desirable to control the value of this parameter. We iterated



s R (1-1)
Rems @ Rem ( -';Pf ) (5-52)

and found convergence to the desired Rem within .1% within 3 or 4 itera-

(1)

tions, The first guess is R.em.S = Rem,

The magnetoaerodynamic coefficients were calculated in each iteration
to insure their convergence with the rest of the solution. For
Rems = Rem = 0, only one integration is required.

The inverse method was also applied for the Hall effect study.

Viscosity and magnetic field deformation were neglected. Thus

1
M=%
1 _
=0

in the equations of Section 5.3. The integration starts at the shock.

The initial condition h(l) is quessed. Zero is a fair first guess and

as one varies the parameters ¢, CH and Ss better quesses become apparent
s

by extrapolation and interpolation of previous results. Using the guess

h(1) the integration proceeds backward until

z® - )2 + k(y)? (insulated body)
(5-53)
= f(y)2 + h(y)2 (conducting body)

is a minimm. Another guess of h(l) is made and the procedure is repeated

(i+1) is compared to Z(l). If the new value is lower

and the new value of Z
we continue to step in that direction. If not a step in the opposite
sense is made., To speed the process, the initial steps are doubled until

the minimum interval is located., This interval and sub=intervals that

follow are halved until Z is sufficiently close to zero. Convergence
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usually required less than 10 iterations. Again the magnetoaerodynamic
coefficients were calculated at each iteration in order to insure their
convergence by inspection.

The results were obtained in terms of Ss and C, and the correspond-

H
]

ing values of S and CH were solved for after each solution. The results
were cross-plotted in order to determine the variation in terms of CH .

In all cases the integrations were performed numerically after writing
the system as first order equations. A standard FORTRAN subroutine for
Runge-Kutta integration of a coupled system of first order equations
(Ref., 74) was employed. The subroutine allowed for a variable inte-
gration step which is altered internally so as to maintain a nominal abso-
lute and per cent error of the integrated functioms. We specified an
absolute error of 10"10 and a relative error of .01% with an initial
integration step of .001, The interval was increased or decreased auto-
matically to insure the accuracy with maximum computation time,

The viscous solutions required from 2 to 10 minutes of time on the
Northwestern University CDC 3400 high speed digital computer operating
on the facility's SCOPE monitor system. The inviscid solutions that
required no iteration required about .1 minute each. The magnetic Reynolds
number computations increased this to ,25 minutes, and the Hall effect
results required about 1 minute of time each or less. The viscous solu-
tion required much more time because of the double iteration involved with
two guesses of initial conditions required. Also, the integration inter-
vals were necessarily small when the boundary layer was present.

The investigation used about 12 hours of computer time, Approximately
half of that was used in developing the programs and the methods reported

in this section.



- 104 -

CHAPTER VI

RESULTS AND CONCLUSIONS

6.1 Introduction

The results of the analytic and numerical computations are presented in
this chapter. One of the principal aims of the investigation was to determine
which effects are important for an account of MHD drag phenomena. The
analyses were restricted to aerodynamic like flow with an attached shock layer
but some information is presented which suggests when the solution can not be
obtained beyond a certain value of magnetic interaction parameter when the
attached layer is assumed.

While a procedure for obtaining a solution in terms of arbitrary values of
the dimensionless groups ¢, S, Re, Rem and CH was described in Chapter V, prac-
tical considerations prohibited this course. The special cases indicate that it
is not always necessary to consider all of the effects at once. The special
cases demonstrated the magnetic interaction, the effect of ¢ and S, with vis-
cosity, magnetic field deformation and the Hall effect considered separately.
There is no reason to believe that the observations made here would be much
different if all the effects were considered simultaneously. These observations
will be summarized later in this chapter with regard to conclusions for an
account of MHD drag in terms of the present theory and what assumptions should

be made in improved theory.
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The stand-off distance for the inviscid non-MHD theory as obtained from
the solution of Section 5.2 is shown in Figure 20. The curve corresponds to
that presented by Lighthill (Ref. 8). A comparison with experiments at moderate
supersonic speeds (Kaattari, Ref., 64) and a correlation known to be valid for
hypersonic speeds (Inouye, Ref. 45) is also shown. The agreement is very good
over the entire range and improves at small density ratio ¢ which corresponds
to high Mach numbers,

The important thing to note in Figure 20 is that the shock stand-off
distance increases with €. This means that the stand-off decreases with an
increase in Mach number. Thus, a high Mach number flow will have a shock
tightly wrapped about the body nose.

The aerodynamic coefficients for the same flow are shown in Figure 21.
The total drag coefficient is compared with the data contained in Hoerner's
book (Ref. 68) and the agreement is very good for ¢ less than about 1/3 or
Mach numbers greater than about 2. The base drag is a small component of the
total drag except for very low supersonic speeds. The present theory assumes
that the base drag is unchanged with MHD interaction.

We note that the aerodynamic coefficients for small ¢ vary little with
€ . This corresponds to the hypersonic approximation. Some laboratory flows
will have € as low as, say, 1/3 and so one must expect some Mach number depen-
dence on the drag coefficient.

The stream lines and magnetic flux lines are shown in Figure 22. For the
non-MHD case, neither are perturbed by the other. The qualitative picture in

Figure 22 does not change with interaction, the predominant effect being an
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increase in shock stand-off distance.

It can be seen that the magnetic field lines are nearly radial and the
stream lines nearly parallel to the body in the shock layer. However, at
large ¢ (low Mach number) the shock stand-off becomes large enough to violate
this (hypersonic) approximation. One can imagine this in Figure 22 by noting
how the field diverges from radial lines at large distances from the body.

The only variable in the inviscid non-MHD problem is the shock density
ratio, a measure of the Mach number. The total drag varies little with the

parameter for this case, Shock stand-off distance is proportional to ¢

6.2 Magnetic Interaction

Viscosity, magnetic field deformation and the Hall effect are neglected.
The shock stand-off distance, shown in Figure 23, increases with the inter-
action parameter and the shock density ratio.

It can be noted that the density ratio ¢ has the main influence for
small interaction parameter S whereas for large interaction both parameters
are important. It is interesting to note that if one attempted to increase
S by raising the Mach number in order to raise the conductivity by shock

heating, one would lower the value of ¢ and perhaps not raise the stand-off

distance as much as otherwise expected. However, if one raised S independently

by increasing the magnetic field strength, the value of ¢ would be unaltered,
As expected, the MHD drag component increased with the interaction para-

meter (Figure 24). For low interaction (S < 1), the MHD component can be
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closely approximated by Equation (5-17)

c = 0.0607 Se (6-1)
qMHD

At high interaction, this estimate tends to be inaccurate because the volume
of interaction increases with the shock stand-off distance and non-linear
effects acquire importance for large S.

The pressure drag coefficient is also shown in Figure 24, It tends to
decrease with increasing interaction because the magnetic pressure begins
to support the flow, For S < 1, one can neglect the reduction in pressure drag.

The total drag is shown in Figure 25, The decrease in pressure drag
inhibits the increase in total drag. One can not neglect the alteration
in pressure drag except at very low interaction. This is one reason that
simple approximations tend to give high predictions. The total drag coefficient
is independent of both S and ¢ for small interaction (S <,1)' The drag itself
depends on the dynamic pressure Po V;z/Z which tends to increase with Mach
number and ambient pressure. At increased interaction (S > 1) the dependence
on ¢ is such that one can expect a greater drag coefficient for low Mach
numbers at the same S. We should emphasize that the dynamic pressure drops
with reduced Mach number and so the absolute drag would probably decrease
(depending on how the other conditions, such as ambient pressure, changed).

Since the MHD component of drag is approximately linear in € one can
expect a greater relative increase (per cent increasé)in drag with aq increase

in S in the laboratory than in flight at the same S. Viscous effects tend to
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reduce this advantage as will be seen in the next section. Further, the esti-
mates of Section 4.6 indicate that large values of S are easier to obtain
in flight for the same field strengths.

The solutions were obtained with increasing interaction parameter until
the boundary conditions could not be satisfied by starting with an interaction
parameter Ss greater than a critical value. The variation of the shock
interaction parameter with the natural parameter S is illustrated in Figure 26.
Beyond the dashed line, no solution could be obtained consistent with the
boundary conditions of the constant property attached shock layer. It was
suggested in Chapter I that this may be associated with the onset of shock
layer lift-off and magnetic support of the flow., Estimates for the range of
S (Section 4.6) indicate that the critical value can probably be exceeded in
flight at the higher altitudes with 10,000 gauss but the situation is at best
borderline for the laboratory flows at the same field strength.

The results of this section are used as a basis for evaluating the effects
of viscosity, magnetic field deformation and the Hall effect in the sections

that follow.

6.3 Viscous Effects

We noted earlier that the viscous solution merges into the inviscid one
at moderate interaction parameter. This is illustrated by the variation of the
shock stand-off distance in Figure 27. The viscous layer has a larger
shock stand-off. One can interpret this as a result of the boundary layer

thickness being added to the stand-off distance for inviscid flow. Of course,
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at low Reynolds number the boundary layer of the classical flow is not dis-
tinct but rather is merged into the outer layer., However, at large inter-
action the boundary layer becomes a distinct sub-layer. This is discussed
later in this section. Figure 27 shows that an inviscid theory would predict
a low value of shock stand-off but a high value of the relative or per cent
increase with the interaction parameter S. We recall that the viscous effects
were expected to be more important in the laboratory than in flight because of
the lower Reynolds numbers in the laboratory.

The pressure and Lorentz drag coefficients (Figure 28) vary similarly
to the inviscid values. Flow at low Reynolds number has a greater drag due
to pressure. This is due to the reduction of pressure gradient along the body.
The viscous forces tend to lower the velocity neér the body and raise the
pressure (consider Bernoulli's equation). Actually, the stagnation pressure
reduces slightly because of viscous dissipation. This is a negligible effect
here.

The Lorentz drag is virtually uneffected by the viscous effects. Appar-
ently, the reduction of the MHD force in the axial direction due to a reduction
in the velocity in'g x B=0V x B x B is enough to counteract the increase in
the interaction volume with the increase in shock stand-off distance. One can
approximate the Lorentz drag coefficient with Eq. (6-1) for S < 1.

Unfortunately, the inviscid theory can not properly account for the
friction drag (Figure 29) which decreases with an increase in interaction para-
meter due to a reduction of the velocity gradient. The total drag (Figure 29)

remains nearly constant over the range of low interaction owing to a decrease
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in friction and pressure drag with an increase in Lorentz drag.

The total drag is greater for viscous flow but the relative increase
with S is less. Thus an inviscid theory predicts too low of a total drag
and too high of a per cent increase (neglecting other effects). This is
more important in the laboratory where the Reynolds numbers are low, 1In
flight, the Reynolds numbers are generally substantially greater than
103 and the results of Figure 29 show that the inviscid theory is sufficient
for drag analysis.

We can make some observations from Figure 29 regarding the heat transfer
coefficient. It is proportional to the skin friction coefficient if one
assumes that Reynolds analogy is valid here, The friction drag coefficient
involves the integral of the friction coefficient and is therefore proportion-
al to the heat transfer coefficient. Since the friction drag decreases with
the interaction parameter S, so must the heat transfer coefficient. The
heat transfer coefficient should also decrease with an increase in Mach
number (lower €) according to the analogy and the results of Figure 29. 1In
flight, the heat transfer itself would increase because of an increase in
stagnation temperature. If the stagnation temperature is held constant in
the laboratory by holding the arc power constant (and the flow rate and
ambient pressure) the heat transfer should decrease with an increase in Mach
number. The flight situation is different because the free stream velocity
dominates the stagnation temperature.

At high interaction, S greater than about 50, viscosity can apparently
be neglected in the drag analysis because of the merging of the solutions, This

can be explained physically as follows.
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At low Reynolds number, the entire shock layer is affected by viscosity and
there is no distinct boundary layer. A typical velocity profile is shown
in Figure 30. At high interaction, the flow is slowed principally near the
body. Away from the body, the flow velocity must match the value forced at
the shock boundary condition. This results in a deformed velocity profile
and the creation of a distinctive layer near the body that looks like a
boundary layer (Figure 30). At high interaction, the boundary layer approxi-
mation appears to be valid even for flow of low Reynolds number.

This suggests that the Reynolds number alone is no longer the approp-
riate parameter for determining whether the boundary layer exists. Since a
large S makes the flow appear as though Re is large, a product of the two is
suggested. This parameter would be large for either large Re or large S.

Such a parameter is the Hartmann number

Ha = (Re S)l/2 (6-2)

This conclusion is not entirely surprising. Poiseuille flow has an inviscid
profile at Ha = «» and the classical viscous one for Ha = 0 (Cambel, Ref. 59).
Seeman and Cambel (Refs. 31 and 32) have interpreted their MHD blunt body
experiments in terms of this parameter in addition to S. There seem to be
theoretical grounds for doing this when viscous effects are important.
However, if one wishes to consider a wide range of conditions, often
obtainable in a laboratory program, the Hartmann number should not replace

the role of either the Reynolds number Re or the interaction parameter S except
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possibly for heat transfer studies. The reason is that Re is the correct
parameter for viscous non-MHD flow and the interaction parameter is the
correct one for inviscid MHD flow. Thus S and Re are appropriate for the
entire range including the extremes whereas the Hartmann number is approp-
riate only for viscous flow, Further, if one wishes to evaluate flight
applications of MHD drag, the Hartmann number is not appropriate for a
comparison,

In heat transfer studies, viscosity is always important and so one of
the extreme cases is eliminated (the inviscid one). 1In this case, the para-

meters Re and Ha are appropriate instead of Re and S.

6.4 Magnetic Field Deformation

The magnetic field deformation was studied for the inviscid flow without
the Hall effect. The shock stand-off distance is shown in Figure 31. A
typical value of Rem is 10-2 with a practical limit of 10-1 (Table 3). However,
very large values of Rem were considered in order to include the possibility
of a seeded plasma. Perhaps even then, Rem = 1 would be a practical limit
representing an order of magnitude increase in the electrical conductivity by
seeding. The value of Rem = 10 was included because such large values are
obtained in astrophysical situations and possibly some seeded plasmas.

We should note that the present definition of Rem includes the shock
density ratio, Some authors do not include this parameter in the definition

and so they appear to be dealing with a higher magnetic Reynolds number. The



- 113 -

factor ¢ reflects the shock layer velocity Vl =ev, .

For Rem less than .1, there appears to be no appreciable effect on the
shock stand-off distance (Figure 31) or the fotal drag coefficient (Figure 32).
However, both decrease with increasing Rem at constant S. That is, if omne
increased the conductivity in Rem and decreased the field squared Bo2 in
the magnetic pressure number such that the interaction parameter (the product
of the magnetic Reynolds number and the magnetic pressure number) remained
constant, the MHD interaction decreases. The reason for the effect seems to
be the deformation of the magnetic field. The deformation is shown in Figure 33
for the moderate values of Rem and in Figure 34 for Rem = 10. The field lines
are pushed towards the body with increasing magnetic Reynolds number. TFor
infinite Rem they are actually wrapped about the body (Ref. 13 and 60).

The distortion causes the radial component of the field strength to de-
crease and the polar value to increase. The shock stand-off distance increases
with magnetic interaction because the § component of velocity is slowed and

the flow rate remains the same as impressed by the supersonic free stream
Rs
m (8) = 21 £b Py Vér sin 8 dr

Thus, if Ve is reduced, RS increases in order to pass the flow. The local force

in the direction that reduces Ve is
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neglecting the induced field in the azimuthal direction due to the Hall effect.
The field distortion is such to reduce Br and so the force that tends to reduce

V. is reduced. The effect on the current

0

{ﬁ = (Vr Be - Ve Br)
tends to cancel out with an increase in Be and a decrease in Br . The net

effect is less shock stand-off at greater Rem and the same S.

The local fluid force associated with drag is in the axial direction

- {p Br sin 8 + {$ Be cos B

The second term dominates when the flow is deformed. The analysis has shown

that the value of Be tends to be increased by a factor 1 + 2(; while the value

of Br is reduced by the factor 1 - 6 . The polar field increases faster than

the radial field decreases and the net effect is a somewhat greater local Lorentz

force in the axial direction. This force integrates to give the total drag

due to MHD forces. Because the interaction volume is substantially reduced

with increasing Rem (decreasing shock stand-off), the total drag decreases.
Physically, it means that it is better to have a weakly conducting fluid

withahigh field strength than a highly conducting fluid and a low field strength.

At least this occurs with the present geometry with the magnetic dipole axis

alligned with the flow. 1In this case the deformation of the field is such to

reduce the interaction. The factor ¢ introduced in Section 4.3 gives the

fractional decrease in the stagnation field strength which is radial in direction
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here. The ratio of the stagnation point field strength to the value that
would exist without magnetic field deformation, Bo’ the value known ahead of
time and used in S, is shown in Figure 35. For Rem less than .1 the effect
is not very important. For Rem of 10, the stagnation field is reduced to
about 1/4 of the original value Bo . This suggests a reduction in the
magnetic pressure at the stagnation point due to deformation of the field
with non-zero Rem.

These considerations suggest that seeding will not be as effective as
otherwise thought. The magnetic Reynolds number would increase as well as
S and so one would receive less an increase in interaction than if one
increased S by increasing the magnetic field leaving Rem unchanged. It is
also apparently more difficult to support the shock layer magnetically at
greater Rem. The critical condition (Figure 36) occurs at a higher interaction

parameter with increasing Rem,

6.5 Hall Effect

The Hall effect is different depending on whether the body is electrically
conducting or insulated. The Hall currents for the two cases are shown in
Figures 37 and 38. 1In the case of the insulated body, the currents can
not penetrate the body. The currents must be opposite in sense near the
shock as compared with near the body (Figure 38). In the case of the con-
ducting body, the current is nearly normal to the body indicating that the
currents must close by re-entering the body somewhere away from the stagnation

region (Figure 37). We have sketched the probable closure pattern for the
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region where the theory is invalid. If the conductivity of the expanded
flow near the shoulder were high enough, the closure would be further aft.
We do not suggest that there is no conduction beyond that point, but rather
that the MHD forces are not great there.

In discussing the importance of the plasma sheath (Chapter II), we
noted the possibility of an insulated body appearing as a conducting one
because of the presence of a highly conducting sheath. One should not rule
out the possibility of all bodies appearing as conducting ones as viewed
from the flow. The Hall currents for a conducting body are radial near
the body and parallel to the shock near the shock. This is the type of infor-
mation that is useful in approximate analyses.

The shock stand-off distance is shown in Figure 39. There is a very
great effect for CH = 10 which could be attained in flight and laboratory
conditions with 10,000 gauss field strength. The stand-off increases only
slowly until an interaction parameter of about a hundred is reached. At
very large interaction parameter, as may be encountered in flight, the Hall
effect seems less important. It should be noted that an increase in the
interaction parameter by increasing the field strength will cause a linear
increase in the Hall coefficient whereas the interaction parameter increases
by the square. One would not follow a single curve of CH = constant. How-
ever, the theory indicates a definite lower value of stand-off with the Hall
effect present and that a conducting body has a larger stand-off than an

insulated one under similar conditions.
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At great interaction, the stand-off tends to approach the value without
the Hall effect in the sense that if one extended the curves without Hall
effect beyond the critical condition (where solutions were not obtained) they
would merge with the solution with CH = 10. The reason for the merging of
solutions is not known. It also occurs with the total drag coefficient
(Figure 40). We can only speculate on this behavior. At large interaction
a large portion of the shock layer flow is further from the stagnation point.
Because the magnetic field is reduced relative to the stagnation point, the
local Hall coefficient is much lower than the reference (stagnation) value.
The effective Hall coefficient may be considerably reduced. This high level
of interaction is probably not obtainable in the laboratory. Also, the
present theory is not wvalid when the onset of magnetic support occurs. It
is likely that a magnetically supported shock layer will behave electrically
as though an insulated body were present. This depends on the conductivity
of the no-flow region and possibility of its having a breakdown voltage for
arcing, all unknown factors. The phenomena of the Hall effect of large
interaction flow requires study through an analysis that is valid when the
magnetic forces dominate.

The Hall effect for aerodynamic-like flow is such to reduce the drag
appreciably. The theory indicates that the conducting body will have a
greater drag than an insulated one. The reduction of both drag and stand-off

with the Hall effect suggests an effective lowering of the conductivity as
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described in Chapter III

1

o eff =0 —=—s
1+(C1'{B)

(6-3)

where Cﬁ is the Hall coefficient per unit field strength. Levy (Ref. 4) has
shown that this is not completely acceptable because of the induced electric
fields, The present theory shows that it makes a difference whether the

body is conducting or insulated., The fact that there is a difference shows
these electric fields are important. A conducting body has a zero polar
electric field. Thus an assumption such as (6-3) is probably better for a
conducting body. As we have already noted from Figure 40, the drag is less
when the Hall effect is important. 1In addition, an insulated body has a
lower drag than a conducting one. Our estimates of the dimensionless groups
indicate that the Hall coefficient is less than one for low interaction para-
meter flow (S < 10). It is probably reasonable to neglect the Hall effect
under this condition. However, larger values are obtainable under some
conditions. This is the case with the experimental work with which the theory
is compared later in the chapter.

The Hall effect tends to increase the magnetic interaction required for
the critical condition associated with magnetic support. However, the results
shown in Figure 41 indicate that the magnetic support may still occur. In
the case of a conducting body, the interaction parameter is not altered greatly
at the shock with the Hall effect. This may make a conducting body easier to

treat by approximate theoretical means.
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The rolling moment coefficient, due to a Lorentz force in the azimuthal
direction is shown in Figure 42, The reversal of the Hall currents for an
insulated body has a cancelling effect on the integrated values of
g11:39¢ . In the case of the conducting body, these currents are in the ¢
direction (Figure 37) where for an insulated body they are in the - ¢ direc-
tion near the body and in the ¢ direction near the shock. The field is
greater near the body and so the - ¢ currents contribute more. Because, the
integrated forces are opposite in sense, the rolling moment that occurs as
a result of the torque of the forces is opposite for the two types of bodies.

A reversal of polarity of the magnetic field would cause the torque to
reverse in sign.

The large rolling moment coefficient for a conducting body with CH = 10
is apparent in Figure 42, A Hall coefficient of this order is expected under
some flight and laboratory conditions. Later, we shall present estimates of
the torque predicted,

The conducting body appears to have a larger moment because of the uni-
form sense of glxcij, as noted above. While the rolling moment coefficient
reaches a maximum as a function of S, we once more point out that one would
normally not operate along a curve of constant Hall coefficient. The effect
is greater, for a conducting body, with larger ¢ . This is traced to the
larger interaction volume of large ¢ flow (larger stand-off distance) when

all other quantities are kept the same.



In the case of an insulated body there is a cross-over point as to the
dependence on € . This is probably due to the nature of the cancelling of
the glxczpw forces described above.

We can summarize the comparison of the insulated and conducting bodies
by saying the Hall effect is stronger for an insulated body. Because the
Hall effect reduces the MHD effect, the conducting body will have a greater
shock stand-off, drag and, probably, less heat transfer than the comparable
insulated body. These considerations indicate that a conducting body is

preferable for utilizing the MHD effect.

6.6 Summary

The numerical results indicate that it is necessary to include vis-
cosity in the analysis only for small interaction unless, of course, one
is interested in phenomena at the wall such as heat transfer which was not
studied in the present investigation. Even for moderate interaction para-
meter as low as 50 the viscous solution appears to be almost completely
merged into the inviscid one (Figures 27-29). This was explained physically
on the basis of a developed boundary layer (Figure 30) and the influence of
the Hartmann number.

Under flight conditions, the Reynolds number is quite high (Table 3)
and so it seems reasonable to neglect viscosity entirely. 1In the laboratory,
where the Reynolds number is low, it is necessary to include the viscous
effect at least for the flow without MHD interaction. If one used the invis-

cid theory to predict per cent increase in drag one would predict too high
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of an increase because the non-MHD drag would have been predicted too low.

This suggests an approximate way to predict the drag. The viscous
effect should be included for the non-MHD flow but neglected for S > O,
There will be some error for small S but the difficulties associated with
the viscous MHD solution are eliminated. Consider a plot of drag versus
interaction parameter as sketched in Figure 43. Near S = 0 , the MHD
interaction is neglected and so the horizontal line shows no increase.

For moderate and large interaction parameter the inviscid theory is used.
Under flight conditions, only the inviscid theory is necessary.

The results indicate that it is entirely realistic to neglect magnetic
field deformation at least for unseeded flows with Rem < .1 , Thus, one
can set Rem = 0 and use the undeformed magnetic field pattern as a known
function. The deformation due to interaction (Figure 33) is less than
the usual difference in actual field patterns and ideal ones such as a
dipole (see Reference 33 for an example of the latter). Thus, it would be
more desirable to use an actual field pattern than to include deformation
of an ideal field. Use of actual field patterns may or may not be feasible
depending on the type of analysis.,

The Hall effect has an appreciable effect on the solution (Figures 39
and 40) and should be included for good results. The effect is to reduce
the shock stand-off, drag, etc. The reduction is greater for an insulated
body. Thus, a conducting body has a larger drag, shock stand-off, etc,

The Hall effect introduces a rolling moment which is stronger for a conduc-

ting body.
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6.7 Prospects for Magnetoaerodynamics

The numerical data allows one to evaluate the possible application
of the MHD effect for entry vehicles at least within the scope of the
present theory for aerodynamic-like flows.

The total drag coefficient without MHD effect is about unity for
high speed flight with ¢ = 1/20 (Figure 21). According to Figure 40,
the total drag is increased 1007 for an interaction parameter of 103
and increased 2507 for S = 4000, Slightly beyond, magnetic support
is apparently in onset. Thus, 2507 increase in drag is about maximum
for flight with an attached shock layer. Figure 13 shows the interaction
parameter for 10,000 gauss and we use this data to see what stagnation
point field is required for the forementioned increase in drag.

At 250 kilofeet, a value of 6300 gauss is indicated for the 250%
increase in drag and the onset of magnetic support. A 100% increase
in drag would ocecur at half that strength.

At 200 kilofeet, 20,000 gauss is required for the 2507 increase
and half for the 1007 increase in drag.

At 150 kilofeet, the requirement increases to 90,000 gauss for a
2507 increase in drag.

These figures were based on Mach 20 and a Hall coefficient of 10.
Higher Mach numbers and lower Hall coefficients would reduce the required
fields., It is apparent that very large field strengths are required at
the lower altitudes. However, one should be able to produce an appreciable

effect above 200 kilofeet with 5 to 10 kilogauss. The increase in drag
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at high altitudes would be welcome for entry control.

Let us consider the torque produced by the Hall effect on a conducting
body. The rolling moment coefficient is shown in Figure 42, For e¢= 1/20
and CH = 10, the coefficient is about .5 for an interaction parameter gréater
than 100. The controlling factor is the Hall coefficient but previous cal-
culations show this parameter is obtainable as well as the interaction

parameter of 100 or so. The actual torque would be
2
Torque = .5 q_ ﬂRb . Rb

At 250 kilofeet and Mach 30 the torque is about 45,000 ft - 1bf for a
10 ft radius body.

The direction of the torque could be reversed by reversing the
polarity of the magnetic field providing the vehicle with roll control
as well as drag. Unmanned vehicles such as ballistic missiles could use
the resulting spin for stabilization. However, it may be an undesirable
effect for manned vehicles as in the case of Gemini 8. It may be possible
to mount the magnet on bearings so that the torque is not transmitted to
the body proper except by viscous stress of the rotating fluid. The magnet
would then spin free of the rest of the vehicle. S. Kranc, of this
laboratory, has suggested placing a conductor near the rotating magnet
so that the relative motion would result in field lines being cut and
power produced in a homo-polar electric generator (Ref. 75). The power

from the generator might be used to power the magnet, auxiliary equipment
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for long range communications of deep space probes or electronic warfare
with ballistic missiles.

At 3600 rpm and 907 efficiency, the 45,000 ft - lbf would produce

3600 1
45,000 X =0 X 21 X 737 X .9

or about 20 kilowatts of power. The principal requirement for the

torque is in the Hall coefficient since the torque is relatively constant
for S > 100, as shown in Figure 42. 1In order to produce the Hall
coefficient used in the example, one would need about 2,000 gauss at
Mach 30 and 250 kilofeet or 20,000 gauss at Mach 20 and 150 kilofeet.
Thus the torque feature appears about as feasible as the drag effect.

The present theory did not account for a spinning magnetic source.
There will be an additional electric field induced in the fluid due to
the relative rotation (just as in the homo-polar generator). This should
oppose the Hall currents and reduce the effect to some degree. The amount
depends on how fast the magnet rotates relative to the fluid. The system
would essentially be "loaded” and as in the case of MHD power generators,
one must consider the characteristics of the external load to which the
fluid magnetic system is coupled., This is beyond the scope of the
present investigation.

It appears as though the prospects for magnetoaerodynamics are

good and warrant further investigation.
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6.8 Comparison with Experiment

In Section 5.2, we showed good agreement between the present theory and
experiment for the non-MHD problem. The experimental data was for air at
high Reynolds number as obtained in conventional wind tunnels where there
is no problem of an incipient merged layer and so the data shown in Figures
20 and 21 tend to verify only the general approach and not the neglect of
the merged layer.

Below 250 kilofeet of altitude, the merged layer is not present either
and so the experiments seem to justify the application of the theory for
flight. Unfortunately, the MHD effect must be tested in an adverse environ-
ment, Conventional wind tunnels do not provide the enthalpy to produce
appreciable electrical conductivity and magnetic interaction parameter. Shock
tubes do not provide the test time for force measurements.

The experimental group of the Gas Dynamics Laboratory has employed their
thermal arc plasma facility to study the phenomena in a high total-enthalpic,
supersonic environment. The facility is described in Reference 33. Argon
is arc heated and expanded to supersonic speeds and low pressure provided by
a vacuum tank and pump system. Shock stand-off distance is measured photo-
optically by means of windows in the tank and the photographs are analyzed
with a microdensitometer. Such a trace of measured intensity is shown in
Figure 44 (Ref. 33). The operating conditions are given in the appendix.

The Reynolds number is quite low and the shock thickness quite high as esti-
mated in Chapter II. Thus there is a considerable difficulty in locating the
shock boundaries. Further, the intensity is believed to be largely stimulated
by electrons affected forward of the shock. However, the theoretical position

of the shock, assumed infinitesimal in thickness, is shown in Figure 44 to be
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in the region of increase in intensity which one would normally suspect to
be associated with the shock front.

The location of the shock front can be determined by various graphical
techniques and when per cent increase in shock stand-off is considered, much
of the difference in the techniques seems to be cancelled out. The data of
Figure 45 (Ref. 33) shows a comparison between theory and experiment on this
basis. The theory is quite high as compared with experiment. Part of this
must be attributed to the theory which does not include a thick shock and an
incipient merged layer but part is probably also due to the use of photo-
graphic intensity as a measure of the shock front as mentioned above. Spec-
troscopic diagnostics, in progress by the experimental group, should help
deliniate the shock structure. Finally, direct measurement of quantities
appearing in the dimensionless groups or used in their evaluation should be
an improvement over the estimates used here. The appendix describes the
method used here.

Theoretical and experimental values of drag are shown in Figure 46. The
viscous theory seems to give best results here. The theory seems to be low
by a fairly constant amount which suggests that perhaps our estimates of the
dynamic pressure for the flow conditions were low (Appendix). We estimate
that non-equilibrium can alter the dynamic pressure by about 25%. In Figure
47, we show the per cent increase in drag which eliminates this dependence.
In this case the agreement is much better and shows the theory including the
Hall effect (but neglecting viscosity) to be superior to the viscous theory
(neglecting the Hall effect). The excellent agreement with the Hall effect

theory is probably fortuitous because at low interaction parameter the viscous



effects are theoretically important (Section 7.1). The influence of non-
equilibrium and non-uniformity of the flow make it difficult to accurately
estimate the interaction parameter. Recent diagnostics show that our estimate
of S is low., If one uses these diagnostics, there is better agreement with
the viscous theory and values even fall below it at high interaction showing
the influence of the Hall effect. The diagnostics of S are in a preliminary
stage and so are not reported here.

The simple theory using the first agproximation for the MHD drag
Eq. (5-17) and neglecting the Hall effect, viscosity and pressure alteration
is shown to give high results in Figure 47 as expected. At very large mag-
netic interaction one might subtract off the viscous and pressure drags owing
to their theoretical reduction. One would use Eq. (5-17) or an improved
relation similar to it for a better estimate of the drag by simple means.
The pressure and viscous drags would be neglected at high interaction parameter.
Current experiments are at not high enough interaction parameter to verify

this suggestion, however.
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NOMENCLATURE

collision cross-section
magnetic field intensity
drag coefficient - drag/gw anZ
ion slip coefficient
skin friction coefficient
Hall coefficiet
rolling moment coefficient - torque/qDo an3
pressure coefficient
fraction for magnetic field reduction
diameter
electric field intensity
electron charge
permitivity
velocity function
inverse velocity function
dependent first order variable i
dr_/dx
i
azimuthal velocity function
inverse azimuthal velocity function
electric field function

inverse electric field function
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w

Re
Re
s

Rem

Rem
s

current density

Hall current function

inverse Hall current function

azimuthal current function

inverse azimuthal current function

molecular weight, Mach number, magnetic field function
inverse magnetic field function

azimuthal magnetic field function

inverse azimuthal magnetic function, polytropic exponent and
number density

pressure

dynamic pressure Py, V;Z/Z

radius, gas constant

radial coordinate

Reynolds number P Vo Rb/'r]1

shock Reynolds number - p V_R_/m;
magnetic Reynolds number - {4 oq € v, Rb

shock magnetic Reynolds number - | ¢ oy V. R

© '8
. . 2
interaction parameter - 01 Bo R.b/p°° v,

2
1 BS Rs/pm voo

shock interaction parameter -0
absolute temperature
time

velocity

volume
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r/Rb

Re/Rp

r/R

Rb/Rs

b



Greek

o degree of ionization

Y .specific’hcat‘ratio, gamma based on speed of sound

) dimensionless shock stand-off distance (Rs - Rb)/Rb
A absolute shock stand-off distance Rs - Rb

A plasma sheath thickness

Abl boundary layer thickness

B magnetic pressure number Bozlu Py V;Z

€ shock density ratio pw/p1

A mean free path

p density

Pe excess charge density

n viscosity

\Y kinematic viscosity

wB flux function (constant for a flux line)

WJ current function (constant for current path line)
¢V stream function (constant for stream line)

) electric potential

8 polar coordinate
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azimuthal coordinate

collision time

cyclotron frequency eB/m
dimensionless distance (x~1)/8

electrical conductivity
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SUBSCRIPTS

shock layer (behind a normal shock)
free stream

body

base

electron

boundary layer
friction

species i
magnetohydrodynamic
radial

shock

pressure

stagnation point
polar

azimuthal
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APPENDIX

ESTIMATES OF LABORATORY CONDITIONS

Consider a comparison between theory and experiment. It is necessary
to determine the dimensionless groups S, €, etc. Conditions may be specified

as follows:

Argon plasma (arc generated)

P, = .00041 atmospheres

M =2,75
o]
m = ,165 lbm/min (flow rate)

la~)
]

960 amp at 25 v = 24 kw (gross power)

The charts of this report allow one to estimate the dimensionless groups as
a function of P, M; and ?w and so we must estimate the latter. We regard
the latter to be the gas temperature.

Assume that an energy balance showed that the net power to the gas was

11 kw (467% efficiency). The stagnation enthalpy would be

_ 11 kw
o .165 1bm/min

= 3700 Btu/lbm

We assume equilibrium in the arc chamber and one atmosphere pressure there and
use the data h(T,p) of Arave and Huseley (Ref. 44) to find

T, = 10,900 K

The ratio of TOIT‘Jo is approximated by the familiar formula
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T /T =14 Y212 (a-1)
0O o 2 o]

The value of y for the arc chamber is 1,2 (equilibrium) and for the expanded
flow would be near 1.67 if equilibrium were maintained. We use the inter-

mediate value of 1.4 and find
T = 4400 °k
[e]
Thus, P> T;, and M; have been specified. From Figure 10

e =1/5 (A-2)

and from Figure 12

Re = 0(100) (A-3)

The interaction parameter for 10,000 gauss and a 1 inch radius body is 350

(Figure 14). The actual interaction parameter is
4 2 .
S = 350 (Bo/10 gauss) (Rb/1 inch) (A-4)

The magnetic Reynolds number is less than .1 (Figure 16) and according to

Section 6.6 we set Rem = 0,
Rem = 0 (A-5)
The Hall coefficient, given by Figure 18, is

_ 4
Cy = 10 (BO/IO gauss) (A-6)
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The dimensionless parameters are now given by (A-2) to (A-6) and they can be
used to obtain the theoretical results.

For the non-MHD case we include viscosity and find (Figure 27)

5 = = .175 (B, = 0) (4-7)

A
Ry

From Figure 29 we find the total drag to be

CD = 1.48 (B0 = 0) (A-8)

(A-7) can be multiplied by the body radius to give the actual stand-off.

To get the actual drag

Drag = 11 sz q, CD
2
2 Pu Vo

™ Ry 3 ¢

= A-9
D (A-9)
2
M
2 poooo
- Ry, S G
And for a 3/4 inch radius body
Drag = 30.6 CD (grams force) (A-10)

Equation (A-10) can be used with (A-8) to find

Drag = 45,2 grams force (Bo = 0)

Equation (A-9) can also be used for the MHD case where the appropriate drag

coefficient is used.
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At low interaction parameter (S < 50) one should use the viscous
theory for shock stand-off and drag (Figures 27 and 29).

At high interaction parameter, one should use the calculations includ-
ing the Hall effect (Figures 39 and 40).

It may be desirable to consider both especially with moderate
interaction parameter. If known values of the quantities estimated
are available they should be used. For example, a measured value of
electrical conductivity could be used in place of the equilibrium one

inferred in Figure 14.
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BLOCK DIAGRAMS FOR THE COMPUTER PROGRAMS

There are three programs for the viscous, magnetic Reynolds number
and Hall effects, respectively. The case where none of these effects is
included can be obtained by using either of the last two programs in which
case no iteration is required.

Input data generally consists of the appropriate dimensionless groups,
initial guesses of boundary conditions, specification of the initial fractional
step of the initial guesses, a minimum step or tolerance as a fraction,
maximum number of iterations, etc.

The programs integrate the differential equations using the initial
conditions and a Runge-Kutta subroutine with variable integration step

10 and 10-4% on the solution functions. The RMS

and an error control of 10~
error in the second point boundary conditions are calculated. If this is
within 1% and the step of the initial conditions have been varied according

to the specified tolerance, the solution is complete and the functions and the
flow observables (magnetoaerodynamic coefficients, shock stand-off, etc.) are
printed out. If not, the initial conditions are varied so as to make the RMS
error a minimum. If the error increases for a given step, a step of half the
interval is made of opposite sense and these steps are repeated until the
error again increases upon which the process is repeated until the RMS error
and initial condition tolerance are acceptable. At each step, the observables

are printed out in order to determine convergence by observation. In the case

of the viscous program, two such initial conditions must be varied and this
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is done by minimizing with respect to one for each step of the other.

In the case of the magnetic Reynolds number program the values of

Rems(i) = Rem (1 + 6(1-1))

are repeated until Rem(l) is within a tolerance and the error is

acceptable. The value of 6(0) is taken as zero,




BLOX DIAGRAM FOR VISCOUS EFFECTS PROGRAM

[\
/€ | o READ INPUT DATA No. Iteration
Re Tclerzmce
S F**(1) step
ey F**1(1) Step
F' e

(  wRITE J - HELDING ]

CALC.
I.C.

Y

INT, _ RINGE~
FORVARD e KUTTA >
{ "
DIFF.
EQS.
TRIAL
RIS —<— CONTROL

A




ERATING

HEOX TIILGRAS FOR Rem PROGRAM

Commeon )

< (
O

!
WRITE)

!

No. Iterstion
Tolerence Rem

1/€

Sg

Ren

EXIT

'\

INT.
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CALC.
COEF.
Rem(1i)




O\
READ INPUT DATA -...]{ No., Iteration
Tolersnce h

A

h Step
Y h(1)
l/e
C wmm ) Ss
WRITE
. cHs
0~ (body)
l CALC. ’
I.C.
INT. [ "mcE-
FORWARD |~ KUTTA
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TABLE 2

VARIATION OF DENSITY AND TRANSPORT COEFFICIENTS

FLIGHT ARGON PLASMA
M = 24 M= 3.5
200 kft. p_ = 1072 atm.
T = 2000 °k
[ <]
DENSITY po/pl 1.03 1.16

l vISCOSITY Yo/V1 .972 .893

coNpucTIvITY Jof1
Pg P1

(EQUILIBRIUM) 1.10 1.40
(FROZEN) .995 1.01
T . o =
NOTE: 1. Based on real gas and equilibrium thermodynamics

3.

except for the “frozen" conductivity where the

free stream gamma was used.

"o" is the stagnation value and "1" the value

behind a normal shock.

v is kinematic viscosity n/p

- 150 -



TABLE 3

SUMMARY OF THE RANGE OF PARAMETERS

(Equilibrium Flow)

FLIGHT ARGON PLASMA

RANGE Typ1CAL! RANGE TYPICAL
e 1/10 - 1/20 1/20 1/3 - 1/20 1/5
Re 102 - 10’ 103 10 - 10° 102
S 1072 - 10° 10° 102 - 10° 102
Rem 1077 - 1071 1072 107 - 107} 1072
Cy 107! - 10% 10 1072 - 10* 10

1. Conditions: R = 10 ft., M = 30, 250 kilofeet altitude.

2. Conditions: R=11in., M =3, p_= 103 aem., T = 4000 %K.

oo

Note: Based on 10,000 gauss stagnation point field strength.
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